Skip to content

Z-Transform

Comprehensive guide to Z-Transform theory, properties, and applications in digital signal processing

DSP

Table of Contents

Open Table of Contents

Introduction to the Z-Transform

The Z-Transform is a fundamental tool in digital signal processing that extends the concept of the Discrete-Time Fourier Transform (DTFT) to handle a broader class of signals. Where the DTFT exists only on the unit circle in the complex plane, the Z-Transform operates over a region of the complex zz-plane.

Definition

For a discrete-time signal x[n]x[n], the Z-Transform is defined as:

X(z)=n=x[n]znX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

where zz is a complex variable. This can be viewed as the DTFT of the signal x[n]rnx[n]r^{-n} evaluated at z=rejωz = re^{j\omega}:

X(z)=X(rejω)=DTFT{x[n]rn}X(z) = X(re^{j\omega}) = \text{DTFT}\{x[n]r^{-n}\}

Geometric Interpretation

The Z-Transform extends the frequency domain analysis by:

  • Unit Circle: The DTFT corresponds to z=1|z| = 1 (unit circle)
  • Complex Plane: The Z-Transform exists over regions in the complex zz-plane
  • Frequency Mapping: We essentially wrap the linear frequency axis around the unit circle

Region of Convergence (ROC)

The Region of Convergence is the set of all complex values zz for which X(z)X(z) converges:

ROC={zC:n=x[n]zn<}\text{ROC} = \{z \in \mathbb{C} : \sum_{n=-\infty}^{\infty} |x[n]||z|^{-n} < \infty\}

Properties of ROC

  1. Ring or Disk: ROC is always a ring or disk in the zz-plane
  2. No Poles: ROC cannot contain any poles of X(z)X(z)
  3. DTFT Existence: DTFT exists if and only if ROC includes the unit circle

Examples of ROC

Right-Sided Exponential Signal

For x[n]=anu[n]x[n] = a^n u[n] (where u[n]u[n] is the unit step):

X(z)=n=0anzn=n=0(az)n=11az1=zzaX(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{a}{z}\right)^n = \frac{1}{1 - az^{-1}} = \frac{z}{z-a}

ROC: z>a|z| > |a| (exterior of circle with radius a|a|)

Left-Sided Exponential Signal

For x[n]=anu[n1]x[n] = -a^n u[-n-1]:

X(z)=zzaX(z) = \frac{z}{z-a}

ROC: z<a|z| < |a| (interior of circle with radius a|a|)

Two-Sided Signal

For a combination of right-sided and left-sided exponentials: x[n]=bnu[n]+cnu[n1]x[n] = b^n u[n] + c^n u[-n-1]

If c<b|c| < |b|, then ROC: c<z<b|c| < |z| < |b| (annular region)

Rational Z-Transforms

Most practical Z-transforms are rational functions:

X(z)=P(z)Q(z)=k=0Mbkzkk=0NakzkX(z) = \frac{P(z)}{Q(z)} = \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=0}^N a_k z^{-k}}

where P(z)P(z) and Q(z)Q(z) are polynomials in zz.

Poles and Zeros

  • Zeros: Values of zz where X(z)=0X(z) = 0 (roots of numerator)
  • Poles: Values of zz where X(z)=X(z) = \infty (roots of denominator)

For a rational transform with MM zeros and NN poles:

  • If M<NM < N: (NM)(N-M) zeros at z=0z = 0
  • If M>NM > N: (MN)(M-N) poles at z=0z = 0

Pole-Zero Plot Example

Consider: X(z)=2z2(b+a)z(za)(zb)X(z) = \frac{2z^2 - (b+a)z}{(z-a)(z-b)}

  • Zeros: z=0,z=b+a2z = 0, z = \frac{b+a}{2}
  • Poles: z=a,z=bz = a, z = b
  • ROC: Depends on signal causality and stability requirements

Inverse Z-Transform

Partial Fraction Expansion

For MNM \geq N with distinct poles:

X(z)=r=0MNBrzr+k=1NAk1dkz1X(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}

where:

  • BrB_r coefficients obtained by long division
  • AkA_k are residues: Ak=(1dkz1)X(z)z=dkA_k = (1 - d_k z^{-1})X(z)\Big|_{z=d_k}
  • dkd_k are the pole locations

Multiple Poles

For a pole of order ss at z=diz = d_i:

X(z)=m=1sCm(1diz1)m+other termsX(z) = \sum_{m=1}^{s} \frac{C_m}{(1 - d_i z^{-1})^m} + \text{other terms}

Methods for Inverse Transform

  1. Partial Fraction Expansion
  2. Power Series Expansion (long division)
  3. Residue Method (contour integration)
  4. Table Lookup with properties

Z-Transform Properties

Linearity

ax1[n]+bx2[n]aX1(z)+bX2(z)ax_1[n] + bx_2[n] \leftrightarrow aX_1(z) + bX_2(z) ROC: At least R1R2R_1 \cap R_2

Time Shifting

x[nk]zkX(z)x[n-k] \leftrightarrow z^{-k}X(z) ROC: Same as X(z)X(z) (except possibly z=0z = 0 or z=z = \infty)

Scaling in Z-Domain

anx[n]X(z/a)a^n x[n] \leftrightarrow X(z/a) ROC: aR|a|R where RR is the ROC of X(z)X(z)

Time Reversal

x[n]X(z1)x[-n] \leftrightarrow X(z^{-1}) ROC: 1/R1/R where RR is the ROC of X(z)X(z)

Convolution

x1[n]x2[n]X1(z)X2(z)x_1[n] * x_2[n] \leftrightarrow X_1(z)X_2(z) ROC: At least R1R2R_1 \cap R_2

Initial Value Theorem

If x[n]x[n] is causal: x[0]=limzX(z)x[0] = \lim_{z \to \infty} X(z)

Final Value Theorem

If x[n]x[n] is causal and (z1)X(z)(z-1)X(z) has no poles on or outside unit circle: limnx[n]=limz1(z1)X(z)\lim_{n \to \infty} x[n] = \lim_{z \to 1} (z-1)X(z)

System Analysis with Z-Transform

System Function

For a linear time-invariant system with impulse response h[n]h[n]: H(z)=n=h[n]znH(z) = \sum_{n=-\infty}^{\infty} h[n] z^{-n}

Input-Output Relationship: Y(z)=H(z)X(z)Y(z) = H(z)X(z)

Difference Equations

Linear constant-coefficient difference equation: k=0Naky[nk]=k=0Mbkx[nk]\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]

Taking Z-transform: k=0NakzkY(z)=k=0MbkzkX(z)\sum_{k=0}^{N} a_k z^{-k} Y(z) = \sum_{k=0}^{M} b_k z^{-k} X(z)

System Function: H(z)=Y(z)X(z)=k=0Mbkzkk=0NakzkH(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}

Stability and Causality

  • Causal System: ROC is exterior of outermost pole
  • Stable System: ROC includes unit circle
  • Causal and Stable: All poles inside unit circle

Example: Second-Order System

y[n]1.5y[n1]+0.5y[n2]=x[n]y[n] - 1.5y[n-1] + 0.5y[n-2] = x[n]

System Function: H(z)=111.5z1+0.5z2=z2z21.5z+0.5H(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}} = \frac{z^2}{z^2 - 1.5z + 0.5}

Poles: z=1,z=0.5z = 1, z = 0.5

For stability and causality: ROC must be z>1|z| > 1

Connection to Frequency Response

When the ROC includes the unit circle: H(ejω)=H(z)z=ejωH(e^{j\omega}) = H(z)\Big|_{z=e^{j\omega}}

This gives the frequency response of the system, relating input and output in the frequency domain.

Applications

  1. Digital Filter Design: Specify desired poles and zeros
  2. System Analysis: Determine stability and frequency response
  3. Control Systems: Analyze feedback systems in discrete time
  4. Signal Processing: Transform-domain processing and analysis

The Z-Transform provides a powerful framework for analyzing discrete-time systems and signals, extending beyond the limitations of the DTFT while maintaining the computational advantages of frequency-domain analysis.