Skip to content

Lecture 2B: Fourier Transforms and Properties

Comprehensive treatment of DTFT theory, existence conditions, Gibbs phenomenon, and mathematical properties with proofs and applications

DSP Fourier Transform DTFT Mathematical Analysis

Table of Contents

Open Table of Contents

Existence Conditions for Discrete-Time Fourier Transform

Mathematical Conditions for DTFT Existence

The Discrete-Time Fourier Transform (DTFT) exists for a sequence x[n]x[n] if certain summability conditions are satisfied.

Absolutely Summable Sequences

Condition: n=x[n]<\sum_{n=-\infty}^{\infty} |x[n]| < \infty

Mathematical Guarantee: If x[n]x[n] is absolutely summable, then: X(ejω)=n=x[n]ejωnX(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

converges uniformly for all ω\omega, and X(ejω)X(e^{j\omega}) is continuous and bounded.

Examples:

  1. Exponential decay: x[n]=anu[n]x[n] = a^n u[n] where a<1|a| < 1
  2. Finite duration: x[n]=0x[n] = 0 for n>N|n| > N

Square Summable Sequences (Finite Energy)

Condition: n=x[n]2<\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty

Convergence: The DTFT exists in the mean-square sense: limNππX(ejω)n=NNx[n]ejωn2dω=0\lim_{N \to \infty} \int_{-\pi}^{\pi} \left|X(e^{j\omega}) - \sum_{n=-N}^{N} x[n] e^{-j\omega n}\right|^2 d\omega = 0

Critical Example: Ideal Low-Pass Filter hideal[n]=sin(ωcn)πn,n0h_{\text{ideal}}[n] = \frac{\sin(\omega_c n)}{\pi n}, \quad n \neq 0 hideal[0]=ωcπh_{\text{ideal}}[0] = \frac{\omega_c}{\pi}

Summability Analysis:

  • n=hideal[n]=\sum_{n=-\infty}^{\infty} |h_{\text{ideal}}[n]| = \infty (not absolutely summable)
  • n=hideal[n]2<\sum_{n=-\infty}^{\infty} |h_{\text{ideal}}[n]|^2 < \infty (square summable)

Gibbs Phenomenon: Mathematical Analysis

Definition and Cause

Gibbs Phenomenon occurs when approximating discontinuous functions with finite Fourier series. The overshoot near discontinuities does not diminish as more terms are added.

Mathematical Description: For a jump discontinuity, the maximum overshoot is approximately: Overshoot0.089×(Jump Height)\text{Overshoot} \approx 0.089 \times (\text{Jump Height})

This corresponds to about 8.9% overshoot regardless of the number of terms in the partial sum.

Ideal Low-Pass Filter Example

Frequency Response:

H(ejω)={1ωωc0ωc<ωπH(e^{j\omega}) = \begin{cases} 1 & |\omega| \leq \omega_c \\ 0 & \omega_c < |\omega| \leq \pi \end{cases}

Truncated Impulse Response:

hN[n]={sin(ωcn)πnnN0n>Nh_N[n] = \begin{cases} \frac{\sin(\omega_c n)}{\pi n} & |n| \leq N \\ 0 & |n| > N \end{cases}

Frequency Response of Truncated Filter: HN(ejω)=n=NNhN[n]ejωnH_N(e^{j\omega}) = \sum_{n=-N}^{N} h_N[n] e^{-j\omega n}

Gibbs Overshoot: Near ω=ωc\omega = \omega_c, the maximum overshoot is: maxωHN(ejω)1.089\max_{\omega} |H_N(e^{j\omega})| \approx 1.089

Key Insight: The height of ripples remains constant as NN \to \infty, but their width decreases, ensuring that the integral of the error converges to zero.

Fundamental Properties of the Discrete-Time Fourier Transform

1. Linearity Property

Mathematical Statement: ax1[n]+bx2[n]DTFTaX1(ejω)+bX2(ejω)ax_1[n] + bx_2[n] \xleftrightarrow{\text{DTFT}} aX_1(e^{j\omega}) + bX_2(e^{j\omega})

Proof: Direct from the definition of DTFT: F{ax1[n]+bx2[n]}=n=(ax1[n]+bx2[n])ejωn\mathcal{F}\{ax_1[n] + bx_2[n]\} = \sum_{n=-\infty}^{\infty} (ax_1[n] + bx_2[n]) e^{-j\omega n} =an=x1[n]ejωn+bn=x2[n]ejωn=aX1(ejω)+bX2(ejω)= a\sum_{n=-\infty}^{\infty} x_1[n] e^{-j\omega n} + b\sum_{n=-\infty}^{\infty} x_2[n] e^{-j\omega n} = aX_1(e^{j\omega}) + bX_2(e^{j\omega})

Applications:

  • Superposition principle for linear systems
  • Decomposition of complex signals into simpler components

2. Time Shifting Property

Mathematical Statement: x[nn0]DTFTejωn0X(ejω)x[n - n_0] \xleftrightarrow{\text{DTFT}} e^{-j\omega n_0} X(e^{j\omega})

Proof: F{x[nn0]}=n=x[nn0]ejωn\mathcal{F}\{x[n - n_0]\} = \sum_{n=-\infty}^{\infty} x[n - n_0] e^{-j\omega n}

Let m=nn0m = n - n_0, so n=m+n0n = m + n_0: =m=x[m]ejω(m+n0)=ejωn0m=x[m]ejωm=ejωn0X(ejω)= \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega (m + n_0)} = e^{-j\omega n_0} \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega m} = e^{-j\omega n_0} X(e^{j\omega})

Physical Interpretation:

  • Magnitude: X(ejω)|X(e^{j\omega})| is unchanged
  • Phase: Adds linear phase ωn0-\omega n_0
  • Group Delay: τg=n0\tau_g = n_0 (constant delay)

3. Frequency Shifting Property (Modulation)

Mathematical Statement: ejω0nx[n]DTFTX(ej(ωω0))e^{j\omega_0 n} x[n] \xleftrightarrow{\text{DTFT}} X(e^{j(\omega - \omega_0)})

Proof: F{ejω0nx[n]}=n=ejω0nx[n]ejωn\mathcal{F}\{e^{j\omega_0 n} x[n]\} = \sum_{n=-\infty}^{\infty} e^{j\omega_0 n} x[n] e^{-j\omega n} =n=x[n]ej(ωω0)n=X(ej(ωω0))= \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega - \omega_0) n} = X(e^{j(\omega - \omega_0)})

Applications:

  • Amplitude Modulation: cos(ω0n)x[n]12[X(ej(ωω0))+X(ej(ω+ω0))]\cos(\omega_0 n) x[n] \leftrightarrow \frac{1}{2}[X(e^{j(\omega - \omega_0)}) + X(e^{j(\omega + \omega_0)})]
  • Frequency Translation: Shifting spectra for communication systems

4. Conjugate Symmetry Property

For Real Sequences (x[n]Rx[n] \in \mathbb{R}): X(ejω)=X(ejω)X(e^{j\omega}) = X^*(e^{-j\omega})

Component-wise Analysis:

  • Magnitude: X(ejω)=X(ejω)|X(e^{j\omega})| = |X(e^{-j\omega})| (even function)
  • Phase: arg[X(ejω)]=arg[X(ejω)]\arg[X(e^{j\omega})] = -\arg[X(e^{-j\omega})] (odd function)
  • Real Part: Re[X(ejω)]=Re[X(ejω)]\text{Re}[X(e^{j\omega})] = \text{Re}[X(e^{-j\omega})] (even)
  • Imaginary Part: Im[X(ejω)]=Im[X(ejω)]\text{Im}[X(e^{j\omega})] = -\text{Im}[X(e^{-j\omega})] (odd)

Proof: For real x[n]x[n]: X(ejω)=(n=x[n]ejωn)=n=x[n]ejωn=X(ejω)X^*(e^{-j\omega}) = \left(\sum_{n=-\infty}^{\infty} x[n] e^{j\omega n}\right)^* = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = X(e^{j\omega})

5. Time Reversal Property

Mathematical Statement: x[n]DTFTX(ejω)x[-n] \xleftrightarrow{\text{DTFT}} X(e^{-j\omega})

Proof: F{x[n]}=n=x[n]ejωn\mathcal{F}\{x[-n]\} = \sum_{n=-\infty}^{\infty} x[-n] e^{-j\omega n}

Let m=nm = -n, so n=mn = -m: =m=x[m]ejωm=X(ejω)= \sum_{m=-\infty}^{\infty} x[m] e^{j\omega m} = X(e^{-j\omega})

Graphical Interpretation: Time reversal corresponds to frequency reversal.

6. Differentiation in Frequency

Mathematical Statement: nx[n]DTFTjddωX(ejω)n x[n] \xleftrightarrow{\text{DTFT}} j \frac{d}{d\omega} X(e^{j\omega})

Proof: Starting with the DTFT definition: X(ejω)=n=x[n]ejωnX(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

Differentiating both sides with respect to ω\omega: ddωX(ejω)=n=x[n]ddωejωn=n=x[n](jn)ejωn\frac{d}{d\omega} X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] \frac{d}{d\omega} e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n] (-jn) e^{-j\omega n} =jn=nx[n]ejωn=jF{nx[n]}= -j \sum_{n=-\infty}^{\infty} n x[n] e^{-j\omega n} = -j \mathcal{F}\{n x[n]\}

Therefore: F{nx[n]}=jddωX(ejω)\mathcal{F}\{n x[n]\} = j \frac{d}{d\omega} X(e^{j\omega})

Applications:

  • Computing moments of signals
  • Analyzing signal energy distribution

7. Parseval’s Theorem

Mathematical Statement: n=x[n]2=12πππX(ejω)2dω\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega

Physical Interpretation: Total energy in time domain equals total energy in frequency domain.

Proof: Using the inverse DTFT: x[n]=12πππX(ejω)ejωndωx[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega

The energy is: n=x[n]2=n=x[n]x[n]\sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=-\infty}^{\infty} x[n] x^*[n] =n=x[n](12πππX(ejω)ejωndω)= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} X^*(e^{j\omega}) e^{-j\omega n} d\omega\right) =12πππX(ejω)(n=x[n]ejωn)dω= \frac{1}{2\pi} \int_{-\pi}^{\pi} X^*(e^{j\omega}) \left(\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}\right) d\omega =12πππX(ejω)2dω= \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega

8. Generalized Parseval’s Theorem (Cross-Correlation)

Mathematical Statement: n=x1[n]x2[n]=12πππX1(ejω)X2(ejω)dω\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega

Applications:

  • Cross-correlation in frequency domain
  • Matched filtering for signal detection
  • Power spectral density calculations

9. Convolution Theorem

Mathematical Statement: x1[n]x2[n]DTFTX1(ejω)X2(ejω)x_1[n] * x_2[n] \xleftrightarrow{\text{DTFT}} X_1(e^{j\omega}) \cdot X_2(e^{j\omega})

Proof: F{x1[n]x2[n]}=F{k=x1[k]x2[nk]}\mathcal{F}\{x_1[n] * x_2[n]\} = \mathcal{F}\left\{\sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]\right\} =n=(k=x1[k]x2[nk])ejωn= \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]\right) e^{-j\omega n}

Changing the order of summation: =k=x1[k]n=x2[nk]ejωn= \sum_{k=-\infty}^{\infty} x_1[k] \sum_{n=-\infty}^{\infty} x_2[n-k] e^{-j\omega n}

Using the time-shifting property: =k=x1[k]ejωkX2(ejω)=X1(ejω)X2(ejω)= \sum_{k=-\infty}^{\infty} x_1[k] e^{-j\omega k} X_2(e^{j\omega}) = X_1(e^{j\omega}) X_2(e^{j\omega})

Dual Property: x1[n]x2[n]DTFT12πX1(ejω)X2(ejω)x_1[n] \cdot x_2[n] \xleftrightarrow{\text{DTFT}} \frac{1}{2\pi} X_1(e^{j\omega}) * X_2(e^{j\omega})

10. Filter Design Applications

High-Pass from Low-Pass Transformation

Method 1: Spectral Inversion If hLP[n]h_{LP}[n] is a low-pass filter, then: hHP[n]=δ[n]hLP[n]h_{HP}[n] = \delta[n] - h_{LP}[n]

Frequency Domain: HHP(ejω)=1HLP(ejω)H_{HP}(e^{j\omega}) = 1 - H_{LP}(e^{j\omega})

Method 2: Frequency Shifting hHP[n]=(1)nhLP[n]=ejπnhLP[n]h_{HP}[n] = (-1)^n h_{LP}[n] = e^{j\pi n} h_{LP}[n]

Frequency Domain: HHP(ejω)=HLP(ej(ωπ))H_{HP}(e^{j\omega}) = H_{LP}(e^{j(\omega - \pi)})

This shifts the low-pass response by π\pi radians, converting passband to stopband and vice versa.

Band-Pass Filter Design

Method: Combine frequency shifting with low-pass prototype: hBP[n]=2hLP[n]cos(ω0n)h_{BP}[n] = 2h_{LP}[n] \cos(\omega_0 n)

where ω0\omega_0 is the center frequency and hLP[n]h_{LP}[n] has cutoff ωc\omega_c.

Result: Band-pass filter centered at ω0\omega_0 with bandwidth 2ωc2\omega_c.

Advanced DTFT Concepts and Applications

Fourier Transform of Periodic Sequences

Mathematical Treatment

For a periodic sequence x[n]x[n] with period NN: x[n+N]=x[n] for all nx[n + N] = x[n] \text{ for all } n

The DTFT contains impulses (Dirac deltas) at harmonic frequencies: X(ejω)=2πk=0N1X[k]δ(ω2πkN)X(e^{j\omega}) = 2\pi \sum_{k=0}^{N-1} X[k] \delta(\omega - \frac{2\pi k}{N})

where X[k]X[k] are the Discrete Fourier Series (DFS) coefficients: X[k]=1Nn=0N1x[n]ej2πkn/NX[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}

Connection to DFS and DFT

Discrete Fourier Series: Represents periodic sequences in frequency domain Discrete Fourier Transform: Computes samples of DTFT for finite-length sequences

Relationship: DFT is samples of DTFT: X[k]=X(ejω)ω=2πk/NX[k] = X(e^{j\omega})\Big|_{\omega = 2\pi k/N}

Windowing Effects and Spectral Leakage

Rectangular Window Analysis

When analyzing finite-length data, we implicitly multiply by a rectangular window: xw[n]=x[n]w[n]x_w[n] = x[n] \cdot w[n]

where w[n]=1w[n] = 1 for 0nN10 \leq n \leq N-1 and w[n]=0w[n] = 0 elsewhere.

Frequency Domain Effect: Xw(ejω)=12πX(ejω)W(ejω)X_w(e^{j\omega}) = \frac{1}{2\pi} X(e^{j\omega}) * W(e^{j\omega})

Rectangular Window DTFT: W(ejω)=ejω(N1)/2sin(ωN/2)sin(ω/2)W(e^{j\omega}) = e^{-j\omega(N-1)/2} \frac{\sin(\omega N/2)}{\sin(\omega/2)}

Spectral Leakage Phenomenon

Cause: Windowing spreads spectral energy from discrete frequencies across the frequency spectrum.

Mathematical Description: A pure sinusoid becomes: cos(ω0n)12πsin(ωN/2)sin(ω/2)[δ(ωω0)+δ(ω+ω0)]\cos(\omega_0 n) \rightarrow \frac{1}{2\pi} \cdot \frac{\sin(\omega N/2)}{\sin(\omega/2)} * [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]

Mitigation Strategies:

  1. Longer observation windows (reduce main lobe width)
  2. Smooth window functions (reduce side lobe levels)
  3. Zero-padding (interpolate spectrum)

Sampling Theory and Aliasing

Discrete-Time Sampling of Continuous-Time Signals

Sampling Relationship: x[n]=xc(nT)x[n] = x_c(nT)

where xc(t)x_c(t) is the continuous-time signal and TT is the sampling period.

Frequency Domain Relationship: X(ejω)=1Tk=Xc(jω2πkT)X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c\left(j\frac{\omega - 2\pi k}{T}\right)

Nyquist Criterion and Anti-Aliasing

Nyquist Frequency: ωN=π\omega_N = \pi (normalized) or fN=12Tf_N = \frac{1}{2T} Hz

Aliasing Condition: If Xc(jΩ)0X_c(j\Omega) \neq 0 for Ω>π/T|\Omega| > \pi/T, then aliasing occurs.

Anti-Aliasing Filter: Low-pass filter with cutoff at π/T\pi/T before sampling:

HAA(jΩ)={TΩπ/T0Ω>π/TH_{AA}(j\Omega) = \begin{cases} T & |\Omega| \leq \pi/T \\ 0 & |\Omega| > \pi/T \end{cases}

Multirate Signal Processing Fundamentals

Downsampling (Decimation)

Operation: y[n]=x[Mn]y[n] = x[Mn] (keep every MM-th sample)

Frequency Domain: Y(ejω)=1Mk=0M1X(ej(ω2πk)/M)Y(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} X(e^{j(\omega - 2\pi k)/M})

Aliasing: Occurs if X(ejω)0X(e^{j\omega}) \neq 0 for ω>π/M|\omega| > \pi/M

Upsampling (Interpolation)

Operation: Insert (L1)(L-1) zeros between each sample

Frequency Domain: Y(ejω)=X(ejωL)Y(e^{j\omega}) = X(e^{j\omega L})

Imaging: Creates replicas at multiples of 2π/L2\pi/L

Practical Multirate Systems

Decimation Filter: Anti-aliasing filter before downsampling Interpolation Filter: Anti-imaging filter after upsampling

Design Specifications:

  • Passband: [0,π/M][0, \pi/M] for decimation
  • Stopband: [π/M,π][\pi/M, \pi] with sufficient attenuation
  • Transition Band: Balance between filter complexity and performance

Z-Transform Relationship

Connection to DTFT

The Z-transform is a generalization of the DTFT: X(z)=n=x[n]znX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

DTFT as Special Case: X(ejω)=X(z)z=ejωX(e^{j\omega}) = X(z)\Big|_{z = e^{j\omega}}

Region of Convergence (ROC)

Absolute Convergence: n=x[n]rn<\sum_{n=-\infty}^{\infty} |x[n] r^{-n}| < \infty for rr in ROC

DTFT Existence: DTFT exists if and only if unit circle is in ROC

Poles and Zeros Analysis

Rational Z-Transform: H(z)=k=0Mbkzkk=0Nakzk=B(z)A(z)H(z) = \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=0}^N a_k z^{-k}} = \frac{B(z)}{A(z)}

Frequency Response: H(ejω)H(e^{j\omega}) obtained by evaluating H(z)H(z) on unit circle

Geometric Interpretation:

  • Zeros: Points where H(z)=0H(z) = 0
  • Poles: Points where H(z)=H(z) = \infty
  • Magnitude: Distance from unit circle to poles/zeros affects H(ejω)|H(e^{j\omega})|

This comprehensive framework provides the mathematical foundation for advanced digital signal processing techniques and applications in communications, audio processing, and system analysis.