Skip to content

Lecture 2A: LCCDEs and System Analysis

Linear Constant Coefficient Difference Equations, system characterization, and frequency domain analysis of discrete-time LTI systems

DSP LTI Systems LCCDE

Table of Contents

Open Table of Contents

Introduction to Linear Constant Coefficient Difference Equations (LCCDEs)

Linear Constant Coefficient Difference Equations form the mathematical foundation for describing and analyzing discrete-time Linear Time-Invariant (LTI) systems. These equations are fundamental to digital signal processing because they provide a compact mathematical representation of how a system transforms input signals into output signals.

Mathematical Foundation

General Form of LCCDEs

The most general form of a Linear Constant Coefficient Difference Equation is:

k=0Naky[nk]=k=0Mbkx[nk]\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]

This can be expanded as: a0y[n]+a1y[n1]+a2y[n2]++aNy[nN]=b0x[n]+b1x[n1]++bMx[nM]a_0 y[n] + a_1 y[n-1] + a_2 y[n-2] + \cdots + a_N y[n-N] = b_0 x[n] + b_1 x[n-1] + \cdots + b_M x[n-M]

Key Parameters:

  • y[n]y[n]: Output sequence at time index nn
  • x[n]x[n]: Input sequence at time index nn
  • aka_k: Feedback coefficients (determine system poles)
  • bkb_k: Feedforward coefficients (determine system zeros)
  • NN: Order of the system (highest delay in output)
  • MM: Order of the numerator (highest delay in input)

Assumptions:

  1. Linearity: The equation is linear in both input and output
  2. Constant Coefficients: All aka_k and bkb_k are time-invariant
  3. Causality: Usually a00a_0 \neq 0 for a causal system

Standard Form

We typically normalize the equation by dividing by a0a_0:

y[n]+a1a0y[n1]++aNa0y[nN]=b0a0x[n]+b1a0x[n1]++bMa0x[nM]y[n] + \frac{a_1}{a_0}y[n-1] + \cdots + \frac{a_N}{a_0}y[n-N] = \frac{b_0}{a_0}x[n] + \frac{b_1}{a_0}x[n-1] + \cdots + \frac{b_M}{a_0}x[n-M]

This gives us the recursive form: y[n]=k=1Naka0y[nk]+k=0Mbka0x[nk]y[n] = -\sum_{k=1}^{N} \frac{a_k}{a_0}y[n-k] + \sum_{k=0}^{M} \frac{b_k}{a_0}x[n-k]

Auxiliary Conditions and Uniqueness

The Uniqueness Problem

A difference equation alone does not uniquely specify the system’s behavior. For an NN-th order system, we need exactly NN auxiliary conditions to determine a unique solution.

Why auxiliary conditions are needed:

  1. The difference equation represents a relationship between past and present values
  2. Without initial conditions, there are infinitely many solutions
  3. Each solution differs by the homogeneous solution

Types of Auxiliary Conditions

  1. Initial Conditions: Specify y[1],y[2],,y[N]y[-1], y[-2], \ldots, y[-N]
  2. Boundary Conditions: Specify values at specific time points
  3. Initial Rest Conditions: Assume y[n]=0y[n] = 0 for n<0n < 0 when x[n]=0x[n] = 0 for n<0n < 0

Fundamental Example: The Accumulator System

Definition and Properties

The accumulator is one of the most fundamental discrete-time systems:

Mathematical Definition: y[n]=k=nx[k]y[n] = \sum_{k=-\infty}^{n} x[k]

Recursive Implementation: y[n]=y[n1]+x[n]y[n] = y[n-1] + x[n]

Physical Interpretation:

  • Accumulates (sums) all past and present input values
  • Digital equivalent of an analog integrator
  • Memory element that “remembers” all previous inputs

Efficiency Considerations

Direct Implementation: Requires storing all past inputs → O(n)O(n) memory and computation Recursive Implementation: Requires only previous output → O(1)O(1) memory and computation

This demonstrates why recursive implementations are preferred in practical DSP systems.

System Properties

  1. Linearity: T[ax1[n]+bx2[n]]=aT[x1[n]]+bT[x2[n]]T[ax_1[n] + bx_2[n]] = aT[x_1[n]] + bT[x_2[n]]
  2. Time-Invariance: T[x[nn0]]=y[nn0]T[x[n-n_0]] = y[n-n_0] (under initial rest conditions)
  3. Memory: System has infinite memory (depends on all past inputs)
  4. Causality: Output depends only on present and past inputs

Solution Methods for LCCDEs

Complete Solution Structure

The complete solution to an LCCDE consists of two parts:

y[n]=yh[n]+yp[n]y[n] = y_h[n] + y_p[n]

where:

  • yh[n]y_h[n]: Homogeneous solution (natural response)
  • yp[n]y_p[n]: Particular solution (forced response)

Homogeneous Solution

For the homogeneous equation: k=0Nakyh[nk]=0\sum_{k=0}^{N} a_k y_h[n-k] = 0

Solution Method:

  1. Assume solution of the form yh[n]=zny_h[n] = z^n
  2. Substitute into homogeneous equation
  3. Factor out znNz^{n-N} to get characteristic equation: a0zN+a1zN1++aN=0a_0 z^N + a_1 z^{N-1} + \cdots + a_N = 0

Case 1: Distinct Roots If roots z1,z2,,zNz_1, z_2, \ldots, z_N are distinct: yh[n]=A1z1n+A2z2n++ANzNny_h[n] = A_1 z_1^n + A_2 z_2^n + \cdots + A_N z_N^n

Case 2: Repeated Roots If root ziz_i has multiplicity rr: yh[n]=(Ai1+Ai2n+Ai3n2++Airnr1)zin+other termsy_h[n] = (A_{i1} + A_{i2}n + A_{i3}n^2 + \cdots + A_{ir}n^{r-1})z_i^n + \text{other terms}

Particular Solution

Methods for finding particular solutions:

  1. Method of Undetermined Coefficients: Assume form based on input
  2. Variation of Parameters: General method for any input
  3. Transform Methods: Use Z-transform techniques

Detailed First-Order Example

System Setup

Consider the first-order LCCDE: y[n]ay[n1]=x[n]y[n] - ay[n-1] = x[n]

with:

  • Input: x[n]=Kδ[n]x[n] = K\delta[n] (impulse of magnitude KK)
  • Initial condition: y[1]=cy[-1] = c

Step-by-Step Solution

Forward Recursion:

For n=0n = 0: y[0]=ay[1]+x[0]=ac+Ky[0] = ay[-1] + x[0] = ac + K

For n=1n = 1: y[1]=ay[0]+x[1]=a(ac+K)+0=a2c+aKy[1] = ay[0] + x[1] = a(ac + K) + 0 = a^2c + aK

For n=2n = 2: y[2]=ay[1]+x[2]=a(a2c+aK)+0=a3c+a2Ky[2] = ay[1] + x[2] = a(a^2c + aK) + 0 = a^3c + a^2K

General Pattern: y[n]=an+1c+Kanu[n],n0y[n] = a^{n+1}c + Ka^n u[n], \quad n \geq 0

where u[n]u[n] is the unit step function.

System Analysis

Components of the Solution:

  1. Zero-input response: an+1ca^{n+1}c (due to initial condition)
  2. Zero-state response: Kanu[n]Ka^n u[n] (due to input)

System Properties with Non-zero Initial Conditions:

  • Non-linear: Doubling input doesn’t double output due to initial condition term
  • Time-variant: Shifting input doesn’t simply shift output

Initial Rest Condition (IRC)

Definition: If x[n]=0x[n] = 0 for n<0n < 0, then y[n]=0y[n] = 0 for n<0n < 0.

Significance:

  • Ensures system linearity and time-invariance
  • Makes system causal and realizable
  • Standard assumption in DSP system analysis

Under IRC: c=0c = 0, so y[n]=Kanu[n]y[n] = Ka^n u[n]

Frequency Domain Representation of LTI Systems

Fundamental Concepts

System Characterization

An LTI system is completely characterized by its impulse response h[n]h[n]:

Convolution Relationship: y[n]=x[n]h[n]=k=x[k]h[nk]=k=h[k]x[nk]y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]

Complex Exponential Response

Eigenfunction Property

Complex exponentials are eigenfunctions of LTI systems. For input x[n]=ejωnx[n] = e^{j\omega n} (for all nn):

y[n]=k=h[k]ejω(nk)y[n] = \sum_{k=-\infty}^{\infty} h[k] \cdot e^{j\omega(n-k)}

=k=h[k]ejωnejωk= \sum_{k=-\infty}^{\infty} h[k] \cdot e^{j\omega n} \cdot e^{-j\omega k}

=ejωnk=h[k]ejωk= e^{j\omega n} \sum_{k=-\infty}^{\infty} h[k] e^{-j\omega k}

Frequency Response Definition

The frequency response is defined as: H(ejω)=k=h[k]ejωkH(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h[k]e^{-j\omega k}

Key Properties:

  1. Eigenvalue: H(ejω)H(e^{j\omega}) is the eigenvalue corresponding to eigenfunction ejωne^{j\omega n}
  2. DTFT: H(ejω)H(e^{j\omega}) is the Discrete-Time Fourier Transform of h[n]h[n]
  3. Periodicity: H(ejω)H(e^{j\omega}) is periodic with period 2π2\pi

Output Relationship

For complex exponential input: x[n]=ejωny[n]=H(ejω)ejωnx[n] = e^{j\omega n} \rightarrow y[n] = H(e^{j\omega}) e^{j\omega n}

Practical Example: Ideal Delay System

System Definition

y[n]=x[nnd]y[n] = x[n-n_d] where ndn_d is the delay in samples.

Impulse Response

h[n]=δ[nnd]h[n] = \delta[n-n_d]

Frequency Response Calculation

For input x[n]=ejωnx[n] = e^{j\omega n}: y[n]=ejω(nnd)=ejωndejωny[n] = e^{j\omega(n-n_d)} = e^{-j\omega n_d} \cdot e^{j\omega n}

Therefore: H(ejω)=ejωndH(e^{j\omega}) = e^{-j\omega n_d}

Analysis of Delay System

Magnitude Response: H(ejω)=ejωnd=1|H(e^{j\omega})| = |e^{-j\omega n_d}| = 1 (All frequencies pass through with equal magnitude)

Phase Response: arg[H(ejω)]=ωnd\arg[H(e^{j\omega})] = -\omega n_d (Linear phase - constant group delay)

Group Delay: τg=ddωarg[H(ejω)]=nd\tau_g = -\frac{d}{d\omega}\arg[H(e^{j\omega})] = n_d

Sinusoidal Steady-State Response

Input Signal Decomposition

For sinusoidal input x[n]=Acos(ω0n+ϕ)x[n] = A\cos(\omega_0 n + \phi):

Using Euler’s formula: x[n]=A2ejϕejω0n+A2ejϕejω0nx[n] = \frac{A}{2}e^{j\phi}e^{j\omega_0 n} + \frac{A}{2}e^{-j\phi}e^{-j\omega_0 n}

System Response

y[n]=A2ejϕH(ejω0)ejω0n+A2ejϕH(ejω0)ejω0ny[n] = \frac{A}{2}e^{j\phi}H(e^{j\omega_0})e^{j\omega_0 n} + \frac{A}{2}e^{-j\phi}H(e^{-j\omega_0})e^{-j\omega_0 n}

Since H(ejω)H(e^{j\omega}) is generally complex: H(ejω0)=H(ejω0)ejθ0H(e^{j\omega_0}) = |H(e^{j\omega_0})|e^{j\theta_0}

For real impulse response: H(ejω0)=H(ejω0)H(e^{-j\omega_0}) = H^*(e^{j\omega_0})

Final Sinusoidal Response

y[n]=AH(ejω0)cos(ω0n+ϕ+θ0)y[n] = A|H(e^{j\omega_0})|\cos(\omega_0 n + \phi + \theta_0)

where:

  • Amplitude is scaled by H(ejω0)|H(e^{j\omega_0})|
  • Phase is shifted by arg[H(ejω0)]\arg[H(e^{j\omega_0})]

Frequency Selective Filters

Classification of Filters

Low-Pass Filters

Characteristics:

  • Pass low frequencies: H(ejω)1|H(e^{j\omega})| \approx 1 for ω<ωc|\omega| < \omega_c
  • Attenuate high frequencies: H(ejω)0|H(e^{j\omega})| \approx 0 for ω>ωc|\omega| > \omega_c
  • Cutoff frequency: ωc\omega_c

Applications:

  • Anti-aliasing filters
  • Noise reduction
  • Smoothing operations

High-Pass Filters

Characteristics:

  • Attenuate low frequencies: H(ejω)0|H(e^{j\omega})| \approx 0 for ω<ωc|\omega| < \omega_c
  • Pass high frequencies: H(ejω)1|H(e^{j\omega})| \approx 1 for ω>ωc|\omega| > \omega_c

Applications:

  • Edge detection
  • DC removal
  • High-frequency noise emphasis

Band-Pass Filters

Characteristics:

  • Pass frequencies in band: ω1<ω<ω2\omega_1 < |\omega| < \omega_2
  • Attenuate frequencies outside band

Applications:

  • Communication systems
  • Audio equalizers
  • Spectral analysis

Band-Stop (Notch) Filters

Characteristics:

  • Attenuate frequencies in band: ω1<ω<ω2\omega_1 < |\omega| < \omega_2
  • Pass frequencies outside band

Applications:

  • Power line interference removal
  • Narrow-band noise elimination

Filter Design Parameters

Key Specifications

  1. Passband: Frequencies that should pass through
  2. Stopband: Frequencies that should be attenuated
  3. Transition band: Region between passband and stopband
  4. Ripple: Allowable variation in passband and stopband
  5. Roll-off rate: Steepness of transition

DTFT Analysis and System Response

Mathematical Foundation

Transform Pair Definition

The DTFT provides a frequency domain representation of discrete-time signals:

Analysis Equation (Forward Transform): X(ejω)=n=x[n]ejωnX(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

Synthesis Equation (Inverse Transform): x[n]=12πππX(ejω)ejωndωx[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega

Properties of the DTFT

Fundamental Properties:

  1. Periodicity: X(ej(ω+2π))=X(ejω)X(e^{j(\omega + 2\pi)}) = X(e^{j\omega})
  2. Linearity: ax1[n]+bx2[n]aX1(ejω)+bX2(ejω)ax_1[n] + bx_2[n] \leftrightarrow aX_1(e^{j\omega}) + bX_2(e^{j\omega})
  3. Time Shifting: x[nn0]ejωn0X(ejω)x[n-n_0] \leftrightarrow e^{-j\omega n_0}X(e^{j\omega})
  4. Frequency Shifting: ejω0nx[n]X(ej(ωω0))e^{j\omega_0 n}x[n] \leftrightarrow X(e^{j(\omega-\omega_0)})
  5. Time Reversal: x[n]X(ejω)x[-n] \leftrightarrow X(e^{-j\omega})
  6. Conjugation: x[n]X(ejω)x^*[n] \leftrightarrow X^*(e^{-j\omega})

Comprehensive Example: Two-Point Moving Average

System Definition

Consider the two-point moving average filter: y[n]=12x[n1]+12x[n2]y[n] = \frac{1}{2}x[n-1] + \frac{1}{2}x[n-2]

Impulse response: h[n]=12δ[n1]+12δ[n2]h[n] = \frac{1}{2}\delta[n-1] + \frac{1}{2}\delta[n-2]

DTFT Calculation

Step 1: Apply definition H(ejω)=n=h[n]ejωn=12ejω+12ej2ωH(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n] e^{-j\omega n} = \frac{1}{2}e^{-j\omega} + \frac{1}{2}e^{-j2\omega}

Step 2: Factor common terms H(ejω)=12ejω(1+ejω)H(e^{j\omega}) = \frac{1}{2}e^{-j\omega}(1 + e^{-j\omega})

Step 3: Use Euler’s formula 1+ejω=1+cos(ω)jsin(ω)=2cos(ω/2)ejω/21 + e^{-j\omega} = 1 + \cos(\omega) - j\sin(\omega) = 2\cos(\omega/2)e^{-j\omega/2}

Step 4: Combine results H(ejω)=12ejω2cos(ω/2)ejω/2=ej3ω/2cos(ω/2)H(e^{j\omega}) = \frac{1}{2}e^{-j\omega} \cdot 2\cos(\omega/2)e^{-j\omega/2} = e^{-j3\omega/2}\cos(\omega/2)

Complete Analysis

Magnitude Response: H(ejω)=cos(ω/2)|H(e^{j\omega})| = |\cos(\omega/2)|

Phase Response:

For cos(ω/2)0\cos(\omega/2) \geq 0: arg[H(ejω)]=3ω2\arg[H(e^{j\omega})] = -\frac{3\omega}{2}

For cos(ω/2)<0\cos(\omega/2) < 0: arg[H(ejω)]=3ω2+π\arg[H(e^{j\omega})] = -\frac{3\omega}{2} + \pi

Filter Characteristics:

  • Type: Low-pass filter
  • DC Gain: H(ej0)=1|H(e^{j0})| = 1
  • Nyquist Gain: H(ejπ)=0|H(e^{j\pi})| = 0
  • First Zero: At ω=π\omega = \pi (Nyquist frequency)
  • Group Delay: τg=1.5\tau_g = 1.5 samples

Physical Interpretation

This filter:

  1. Averages two consecutive samples with equal weight
  2. Smooths the input signal by reducing high-frequency components
  3. Introduces delay of 1.5 samples on average
  4. Completely removes signals at the Nyquist frequency

The cos(ω/2)\cos(\omega/2) magnitude response shows the characteristic low-pass filtering behavior, with gradual roll-off from DC to Nyquist frequency.

System Stability and Pole-Zero Analysis

Stability Analysis for LTI Systems

Bounded-Input Bounded-Output (BIBO) Stability

Definition: A system is BIBO stable if every bounded input produces a bounded output.

Mathematical Condition: For LTI systems, BIBO stability is equivalent to: n=h[n]<\sum_{n=-\infty}^{\infty} |h[n]| < \infty

This means the impulse response must be absolutely summable.

Relationship to System Poles

For systems described by LCCDEs, stability is determined by the characteristic equation roots (poles):

Stability Condition: All poles must lie inside the unit circle in the z-plane: zi<1 for all poles zi|z_i| < 1 \text{ for all poles } z_i

Connection Between Time and Frequency Domain

Stable System: h[n]<\sum |h[n]| < \infty ⟹ DTFT exists and is continuous

Unstable System: Some poles outside unit circle ⟹ DTFT may not exist in classical sense

Practical Design Considerations

Computational Efficiency

Direct Form Implementation: Requires N+M+1N+M+1 multiplications per output sample

Factored Form: May reduce computational complexity and improve numerical stability

Cascade/Parallel Forms: Break complex systems into simpler subsystems

Numerical Issues

  1. Coefficient Quantization: Limited precision affects pole locations
  2. Round-off Noise: Accumulates in recursive structures
  3. Overflow: Large intermediate values in fixed-point implementations

Real-Time Constraints

  1. Causality: System must be implementable with finite delay
  2. Memory Requirements: Practical systems have finite memory
  3. Processing Time: Computations must complete within sample period

This comprehensive framework provides the mathematical foundation for analyzing and designing discrete-time LTI systems using LCCDEs and frequency domain techniques.