Skip to content

Lecture 2C: Digital Halftoning and Visual Psychophysics

Digital halftoning algorithms, spatial frequency analysis, human visual system modeling, and psychophysical foundations of visual perception

DSP Image Processing Digital Halftoning Visual Psychophysics Human Vision

Table of Contents

Open Table of Contents

Digital Halftoning: Theory and Mathematical Framework

Introduction to Digital Halftoning

Digital halftoning is a spatial quantization process that converts continuous-tone grayscale images into binary (black and white) images while preserving the visual perception of intermediate gray levels. This technique is fundamental to printing technology and display systems with limited dynamic range.

Mathematical Definition

Given a continuous-tone input image f(x,y)f(x,y) with pixel values in the range [0,L1][0, L-1] where LL is the number of gray levels, halftoning produces a binary output image g(x,y)g(x,y) where each pixel is either black (1) or white (0).

The fundamental challenge is to maintain the local average gray level while using only binary values:

E[g(x,y)]f(x,y)L1\mathbb{E}[g(x,y)] \approx \frac{f(x,y)}{L-1}

Human Visual System and Spatial Filtering

Low-Pass Filtering Model

The human visual system acts as a low-pass spatial filter with approximate transfer function:

Heye(fx,fy)=eαfx2+fy2H_{\text{eye}}(f_x, f_y) = e^{-\alpha\sqrt{f_x^2 + f_y^2}}

where fx,fyf_x, f_y are spatial frequencies and α\alpha determines the cutoff characteristics.

Critical Insight: If the halftoning pattern has frequency content above the eye’s cutoff frequency, the binary pattern will be perceived as continuous gray levels.

Viewing Distance and Spatial Resolution

For a viewing distance dd and pixel size Δx\Delta x, the effective spatial frequency is:

fspatial=1Δxd cycles/radianf_{\text{spatial}} = \frac{1}{\Delta x \cdot d} \text{ cycles/radian}

Design Criterion: Halftone patterns should have dominant frequency components above: fthreshold30 cycles/degree×π1800.52 cycles/radianf_{\text{threshold}} \approx 30 \text{ cycles/degree} \times \frac{\pi}{180} \approx 0.52 \text{ cycles/radian}

Thresholding-Based Halftoning

Simple Thresholding

The most basic halftoning method applies a global threshold TT:

Binary output determined by: g(x,y)=1g(x,y) = 1 if f(x,y)Tf(x,y) \geq T, otherwise g(x,y)=0g(x,y) = 0

Problems with Simple Thresholding:

  1. Loss of spatial detail in regions near the threshold
  2. Contour artifacts at gray level boundaries
  3. Poor reproduction of intermediate gray levels

Adaptive Thresholding with Spatial Modulation

To address simple thresholding limitations, we introduce spatially varying thresholds:

T(x,y)=T0+Ap(x,y)T(x,y) = T_0 + A \cdot p(x,y)

where:

  • T0T_0: Base threshold level
  • AA: Modulation amplitude
  • p(x,y)p(x,y): Spatial pattern function

Common Pattern Functions:

  1. Periodic Screen Pattern: p(x,y)=cos(2πxPx)+cos(2πyPy)p(x,y) = \cos\left(\frac{2\pi x}{P_x}\right) + \cos\left(\frac{2\pi y}{P_y}\right)

  2. Random Noise Pattern: p(x,y)=N(0,σ2)p(x,y) = \mathcal{N}(0, \sigma^2) (Gaussian white noise)

  3. Blue Noise Pattern (optimal for human vision): P(fx,fy)=constant for f>fc, zero for f<fcP(f_x, f_y) = \text{constant for } f > f_c, \text{ zero for } f < f_c

Mathematical Analysis of Halftoning Quality

Mean Squared Error (MSE) Criterion

For a halftoned image g(x,y)g(x,y) and original image f(x,y)f(x,y):

MSE=1MNx=0M1y=0N1[f(x,y)g(x,y)]2\text{MSE} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [f(x,y) - g(x,y)]^2

Frequency Domain Analysis

The power spectral density of halftone error reveals perceptual quality:

E(fx,fy)=F(fx,fy)G(fx,fy)2E(f_x, f_y) = |F(f_x, f_y) - G(f_x, f_y)|^2

Quality Metrics:

  1. Low-frequency error (visible as intensity variations)
  2. High-frequency content (contributes to texture appearance)
  3. Spectral concentration around specific frequencies (causes visible patterns)

Noise Addition for Improved Halftoning

Dithering with Additive Noise

Pre-processing with noise before thresholding:

f(x,y)=f(x,y)+n(x,y)f'(x,y) = f(x,y) + n(x,y)

followed by binary quantization based on the modified values.

Mathematical Benefits of Noise Addition

Linearization Effect: For small noise variance σn2\sigma_n^2, the expected output becomes:

E[g(x,y)]Φ(f(x,y)Tσn)\mathbb{E}[g(x,y)] \approx \Phi\left(\frac{f(x,y) - T}{\sigma_n}\right)

where Φ()\Phi(\cdot) is the cumulative distribution function.

Optimal Noise Characteristics:

  1. White noise: Uniform power distribution across all frequencies
  2. Blue noise: Concentrated at high frequencies (less visible)
  3. Noise variance: σn2=(L1)212\sigma_n^2 = \frac{(L-1)^2}{12} for uniform quantization

Blue Noise Optimization

Blue noise patterns minimize low-frequency error while maintaining randomness:

Optimization Criterion: minp(x,y)0fcP(fx,fy)2dfxdfy\min_{p(x,y)} \int_0^{f_c} |P(f_x, f_y)|^2 \, df_x \, df_y

subject to the constraint that p(x,y)p(x,y) produces the desired gray level distribution.

Advanced Halftoning Techniques

Error Diffusion Algorithm

Mathematical Formulation:

  1. Quantization: g[i,j]=round(f[i,j])g[i,j] = \text{round}(f'[i,j])
  2. Error calculation: e[i,j]=f[i,j]g[i,j]e[i,j] = f'[i,j] - g[i,j]
  3. Error diffusion: f[i+m,j+n]=f[i+m,j+n]+k,lw[k,l]e[ik,jl]f'[i+m,j+n] = f[i+m,j+n] + \sum_{k,l} w[k,l] \cdot e[i-k,j-l]

Popular Error Diffusion Filters:

Floyd-Steinberg Filter: Distributes quantization error to neighboring pixels with weights designed to preserve local average intensity while minimizing visible artifacts.

Jarvis Filter: Uses a larger neighborhood for error distribution, providing smoother results at the cost of increased computational complexity.

Clustered Dot Screening

Mathematical Model: Screen function S(x,y)S(x,y) with period (Px,Py)(P_x, P_y):

S(x,y)=cos(2πxPx)+cos(2πyPy)+cos(2π(x+y)Px)S(x,y) = \cos\left(\frac{2\pi x}{P_x}\right) + \cos\left(\frac{2\pi y}{P_y}\right) + \cos\left(\frac{2\pi(x+y)}{P_x}\right)

Threshold Modulation: T(x,y)=L12+AS(x,y)T(x,y) = \frac{L-1}{2} + A \cdot S(x,y)

Dot Size Control: The area of printed dots varies continuously with input gray level:

Dot Area=πr2(g)PxPy\text{Dot Area} = \frac{\pi r^2(g)}{P_x P_y}

where r(g)r(g) is the dot radius as a function of gray level gg.

Perceptual Optimization

Contrast Sensitivity Function (CSF)

The human visual system’s contrast sensitivity varies with spatial frequency:

CSF(f)=afebf1+cf2\text{CSF}(f) = af \cdot e^{-bf} \cdot \sqrt{1 + cf^2}

Perceptually Weighted Error: Eweighted(fx,fy)=F(fx,fy)G(fx,fy)2CSF2(fx2+fy2)E_{\text{weighted}}(f_x, f_y) = |F(f_x, f_y) - G(f_x, f_y)|^2 \cdot \text{CSF}^2(\sqrt{f_x^2 + f_y^2})

Quality Assessment Metrics

  1. Weighted Signal-to-Noise Ratio (WSNR): WSNR=10log10(fF(f)2CSF2(f)fF(f)G(f)2CSF2(f))\text{WSNR} = 10\log_{10}\left(\frac{\sum_{f} |F(f)|^2 \cdot \text{CSF}^2(f)}{\sum_{f} |F(f) - G(f)|^2 \cdot \text{CSF}^2(f)}\right)

  2. Delta-E Color Difference (for color halftoning): ΔE=(ΔL)2+(Δa)2+(Δb)2\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}

Spatial Frequency Analysis: Advanced Mathematical Framework

Fundamental Concepts in Spatial Frequency

Spatial frequency represents the rate of change of image intensity across spatial dimensions. Unlike temporal frequency measured in Hertz (cycles per second), spatial frequency is measured in cycles per unit distance (e.g., cycles/mm, cycles/pixel, or cycles/degree of visual angle).

Mathematical Definition

For a 2D image f(x,y)f(x,y), the spatial frequency content is revealed through the 2D Fourier Transform:

F(u,v)=f(x,y)ej2π(ux+vy)dxdyF(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux + vy)} \, dx \, dy

where:

  • (u,v)(u,v): Spatial frequency coordinates (cycles per unit distance)
  • F(u,v)F(u,v): Complex-valued frequency domain representation
  • Magnitude F(u,v)|F(u,v)|: Amplitude of frequency component
  • Phase arg[F(u,v)]\arg[F(u,v)]: Phase of frequency component

Discrete 2D Fourier Transform

For digitized images with M×NM \times N pixels:

F[k,l]=1MNm=0M1n=0N1f[m,n]ej2π(km/M+ln/N)F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi(km/M + ln/N)}

Frequency Mapping:

  • u=kMΔxu = \frac{k}{M \cdot \Delta x} where Δx\Delta x is pixel spacing in x-direction
  • v=lNΔyv = \frac{l}{N \cdot \Delta y} where Δy\Delta y is pixel spacing in y-direction

Spatial Frequency Characteristics

Low Spatial Frequencies

Range: 0fflow0 \leq f \leq f_{\text{low}} (typically <1< 1 cycle/degree)

Characteristics:

  • Represent broad intensity variations and overall illumination
  • Control global contrast and brightness perception
  • Correspond to large-scale features in images

Mathematical Description: For slowly varying functions: f(x,y)f0+a1x+a2y+a3xyf(x,y) \approx f_0 + a_1 x + a_2 y + a_3 xy

The Fourier transform concentrates energy near DC (zero frequency): F(0,0)=f(x,y)dxdy|F(0,0)| = \left|\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \, dx \, dy\right|

Mid Spatial Frequencies

Range: flow<ffmidf_{\text{low}} < f \leq f_{\text{mid}} (typically 1-10 cycles/degree)

Characteristics:

  • Encode structural information and object boundaries
  • Critical for pattern recognition and scene understanding
  • Most perceptually significant for human vision

Mathematical Analysis: Edge content contributes significantly to mid-frequencies. For a step edge: f(x)=AH(xx0)f(x) = A \cdot H(x - x_0)

where H()H(\cdot) is the Heaviside function, the Fourier transform is: F(u)=Aj2πuej2πux0F(u) = \frac{A}{j2\pi u} e^{-j2\pi u x_0}

Energy decays as F(u)1u|F(u)| \propto \frac{1}{|u|}.

High Spatial Frequencies

Range: f>fmidf > f_{\text{mid}} (typically >10> 10 cycles/degree)

Characteristics:

  • Contain fine detail and texture information
  • Represent noise and small-scale variations
  • Often attenuated by human visual system

Mathematical Properties: For white noise with variance σ2\sigma^2: E[F(u,v)2]=σ2δ(u)δ(v)\mathbb{E}[|F(u,v)|^2] = \sigma^2 \cdot \delta(u) \cdot \delta(v)

Nyquist Frequency and Sampling Theory

Spatial Nyquist Frequency

For images sampled with pixel spacing Δx\Delta x and Δy\Delta y:

Nyquist Frequencies:

  • fN,x=12Δxf_{N,x} = \frac{1}{2\Delta x} cycles per unit distance in x-direction
  • fN,y=12Δyf_{N,y} = \frac{1}{2\Delta y} cycles per unit distance in y-direction

Critical Insight: Spatial frequencies above the Nyquist frequency cause aliasing artifacts.

Aliasing in Spatial Domain

When input contains frequencies f>fNf > f_N, they appear as false lower frequencies:

falias=finputk2fNf_{\text{alias}} = |f_{\text{input}} - k \cdot 2f_N|

where kk is chosen to minimize faliasf_{\text{alias}}.

Mathematical Analysis: For a sinusoidal pattern with frequency f>fNf > f_N: g(x)=cos(2πfx)g(x) = \cos(2\pi f x)

After sampling with Δx\Delta x: g[n]=cos(2πfnΔx)g[n] = \cos(2\pi f n \Delta x)

If f=fN+Δff = f_N + \Delta f where Δf<fN\Delta f < f_N: g[n]=cos(2π(fN+Δf)nΔx)=cos(πn+2πΔfnΔx)g[n] = \cos(2\pi (f_N + \Delta f) n \Delta x) = \cos(\pi n + 2\pi \Delta f n \Delta x)

This appears as frequency Δf\Delta f instead of the true frequency fN+Δff_N + \Delta f.

Spatial Filtering and Convolution

Convolution in Spatial Domain

Mathematical Definition: (fh)(x,y)=f(ξ,η)h(xξ,yη)dξdη(f * h)(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi, \eta) h(x-\xi, y-\eta) \, d\xi \, d\eta

For discrete images: (fh)[m,n]=k=l=f[k,l]h[mk,nl](f * h)[m,n] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] \cdot h[m-k, n-l]

Frequency Domain Filtering

Convolution-Multiplication Duality: f(x,y)h(x,y)FF(u,v)H(u,v)f(x,y) * h(x,y) \xleftrightarrow{\mathcal{F}} F(u,v) \cdot H(u,v)

Practical Filtering Steps:

  1. Forward FFT: F(u,v)=F{f(x,y)}F(u,v) = \mathcal{F}\{f(x,y)\}
  2. Multiply by filter: G(u,v)=F(u,v)H(u,v)G(u,v) = F(u,v) \cdot H(u,v)
  3. Inverse FFT: g(x,y)=F1{G(u,v)}g(x,y) = \mathcal{F}^{-1}\{G(u,v)\}

Common Spatial Filters

Low-Pass Filter (removes high frequencies):

HLP(u,v)={1if u2+v2D00if u2+v2>D0H_{\text{LP}}(u,v) = \begin{cases} 1 & \text{if } \sqrt{u^2 + v^2} \leq D_0 \\ 0 & \text{if } \sqrt{u^2 + v^2} > D_0 \end{cases}

High-Pass Filter (removes low frequencies): HHP(u,v)=1HLP(u,v)H_{\text{HP}}(u,v) = 1 - H_{\text{LP}}(u,v)

Butterworth Filter (smooth transition): HButter(u,v)=11+[u2+v2D0]2nH_{\text{Butter}}(u,v) = \frac{1}{1 + \left[\frac{\sqrt{u^2 + v^2}}{D_0}\right]^{2n}}

where nn controls the sharpness of the transition.

Applications in Image Processing

Edge Detection via High-Pass Filtering

Gradient-Based Edge Detection:

  • Sobel Operator: Approximates the gradient using discrete convolution masks
  • Prewitt Operator: Alternative gradient approximation with equal weights

Edge Magnitude: f=(Gxf)2+(Gyf)2|\nabla f| = \sqrt{(G_x * f)^2 + (G_y * f)^2}

Edge Direction: θ=arctan(GyfGxf)\theta = \arctan\left(\frac{G_y * f}{G_x * f}\right)

Laplacian of Gaussian (LoG) Filter

Mathematical Form: 2G(x,y)=1πσ4[1x2+y22σ2]ex2+y22σ2\nabla^2 G(x,y) = \frac{1}{\pi \sigma^4}\left[1 - \frac{x^2 + y^2}{2\sigma^2}\right] e^{-\frac{x^2 + y^2}{2\sigma^2}}

Properties:

  • Zero-crossing detection identifies edges
  • Scale parameter σ\sigma controls feature size sensitivity
  • Mexican hat appearance in spatial domain

Frequency Domain Analysis for Quality Assessment

Power Spectral Density (PSD)

Definition: P(u,v)=F(u,v)2P(u,v) = |F(u,v)|^2

Radial Power Spectrum: P(f)=02πP(fcosθ,fsinθ)fdθP(f) = \int_0^{2\pi} P(f\cos\theta, f\sin\theta) f \, d\theta

where f=u2+v2f = \sqrt{u^2 + v^2} is the radial frequency.

Image Quality Metrics

Total Variation (measures smoothness): TV=(fx)2+(fy)2dxdy\text{TV} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, dx \, dy

Frequency Domain Equivalent: TV=2πu2+v2F(u,v)dudv\text{TV} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} 2\pi\sqrt{u^2 + v^2} |F(u,v)| \, du \, dv

Spectral Entropy (measures frequency distribution): H=p(u,v)logp(u,v)dudvH = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(u,v) \log p(u,v) \, du \, dv

where p(u,v)=F(u,v)2F(u,v)2dudvp(u,v) = \frac{|F(u,v)|^2}{\int |F(u,v)|^2 \, du \, dv} is the normalized power spectrum.

Human Visual System as a Fourier Analyzer: Psychophysical Evidence

Campbell-Robson Paradigm: Mathematical Foundation

The groundbreaking work of Campbell and Robson (1968) provided compelling evidence that the human visual system performs spatial frequency analysis analogous to Fourier decomposition. Their psychophysical experiments revealed that visual perception operates through independent spatial frequency channels.

Experimental Setup and Mathematical Analysis

Sinusoidal Gratings: Test patterns with luminance modulation: L(x)=L0[1+Mcos(2πfx+ϕ)]L(x) = L_0 \left[1 + M \cos\left(2\pi f x + \phi\right)\right]

where:

  • L0L_0: Mean luminance (background brightness)
  • MM: Modulation depth (contrast)
  • ff: Spatial frequency (cycles/degree)
  • ϕ\phi: Phase offset

Square Wave Gratings: Periodic step functions with Fourier expansion: Lsquare(x)=L0[1+4Mπn=1,3,5,1ncos(2πnfx)]L_{\text{square}}(x) = L_0 \left[1 + \frac{4M}{\pi} \sum_{n=1,3,5,\ldots} \frac{1}{n} \cos(2\pi n f x)\right]

Key Mathematical Relationship: The fundamental frequency component has amplitude 4Mπ1.27M\frac{4M}{\pi} \approx 1.27M, higher than the sine wave amplitude MM.

Threshold Detection Experiments

Detection Threshold Measurement:

For sinusoidal gratings, the contrast sensitivity at threshold is: Ssin(f)=1Mthreshold(f)S_{\sin}(f) = \frac{1}{M_{\text{threshold}}(f)}

For square wave gratings: Ssquare(f)=1Mthreshold,square(f)S_{\text{square}}(f) = \frac{1}{M_{\text{threshold,square}}(f)}

Campbell-Robson Discovery: Ssin(f)Ssquare(f)S_{\sin}(f) \approx S_{\text{square}}(f)

Mathematical Interpretation: If the visual system detected integrated energy, square waves should be easier to detect due to higher harmonic content. The equal thresholds indicate frequency-selective detection.

Fourier Analysis of Visual Processing

Linear Systems Model: Visual system response to input L(x,y)L(x,y): R(u,v)=L(u,v)Hvisual(u,v)R(u,v) = L(u,v) \cdot H_{\text{visual}}(u,v)

where Hvisual(u,v)H_{\text{visual}}(u,v) is the modulation transfer function of the visual system.

Channel-Based Processing: Multiple parallel channels with different frequency tuning: Ri(x,y)=L(u,v)Hi(u,v)ej2π(ux+vy)dudvR_i(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} L(u,v) H_i(u,v) e^{j2\pi(ux + vy)} \, du \, dv

where Hi(u,v)H_i(u,v) represents the ii-th spatial frequency channel.

Mathematical Models of Visual Spatial Frequency Channels

Gabor Filter Model

Visual neurons are modeled as Gabor filters - Gaussian-windowed sinusoids:

g(x,y)=12πσxσyexp(x22σx2y22σy2)cos(2πf0x+ϕ)g(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2}\right) \cos(2\pi f_0 x + \phi)

Parameters:

  • σx,σy\sigma_x, \sigma_y: Spatial extent (receptive field size)
  • f0f_0: Preferred spatial frequency
  • ϕ\phi: Phase preference

Frequency Response: G(u,v)=exp(2π2σx2(uf0)22π2σy2v2)+exp(2π2σx2(u+f0)22π2σy2v2)G(u,v) = \exp\left(-2\pi^2\sigma_x^2(u-f_0)^2 - 2\pi^2\sigma_y^2 v^2\right) + \exp\left(-2\pi^2\sigma_x^2(u+f_0)^2 - 2\pi^2\sigma_y^2 v^2\right)

Difference of Gaussians (DoG) Model

Mathematical Form: DoG(x,y)=12πσ12ex2+y22σ12k12πσ22ex2+y22σ22\text{DoG}(x,y) = \frac{1}{2\pi\sigma_1^2} e^{-\frac{x^2+y^2}{2\sigma_1^2}} - k \frac{1}{2\pi\sigma_2^2} e^{-\frac{x^2+y^2}{2\sigma_2^2}}

where σ2>σ1\sigma_2 > \sigma_1 and kk is the amplitude ratio.

Frequency Response: DoG(u,v)=e2π2σ12(u2+v2)ke2π2σ22(u2+v2)\text{DoG}(u,v) = e^{-2\pi^2\sigma_1^2(u^2+v^2)} - k \cdot e^{-2\pi^2\sigma_2^2(u^2+v^2)}

Biological Significance: Models center-surround organization of retinal ganglion cells and lateral geniculate nucleus (LGN) neurons.

Contrast Sensitivity Function: Quantitative Analysis

Mathematical Formulation

The Contrast Sensitivity Function (CSF) describes visual sensitivity across spatial frequencies:

CSF(f)=afbecfd\text{CSF}(f) = a \cdot f^b \cdot e^{-c f^d}

Typical Parameters (for photopic conditions):

  • a=540a = 540: Scaling factor
  • b=0.2b = 0.2: Low-frequency slope
  • c=0.0016c = 0.0016: Decay rate
  • d=1.1d = 1.1: High-frequency rolloff

Daly’s CSF Model

More sophisticated model accounting for luminance adaptation:

CSF(f,L)=1.4fe0.114f1+0.06e0.3fL+0.150.150.5\text{CSF}(f, L) = \frac{1.4 \cdot f \cdot e^{-0.114f}}{\sqrt{1 + 0.06 \cdot e^{0.3f}}} \cdot \sqrt{\frac{L + 0.15}{0.15}}^{0.5}

where LL is the adaptation luminance in cd/m².

Peak Sensitivity Analysis

Peak Frequency: Occurs at fpeak35f_{\text{peak}} \approx 3-5 cycles/degree for normal viewing conditions.

Mathematical Derivation: Setting ddfCSF(f)=0\frac{d}{df}\text{CSF}(f) = 0:

For the simplified form CSF(f)=afebf\text{CSF}(f) = af \cdot e^{-bf}: ddf(afebf)=a(1bf)ebf=0\frac{d}{df}(af \cdot e^{-bf}) = a(1 - bf) e^{-bf} = 0

Solving: fpeak=1bf_{\text{peak}} = \frac{1}{b}

Spatial Frequency Adaptation and Masking

Selective Adaptation Experiments

Paradigm: Prolonged exposure to specific spatial frequency reduces sensitivity to that frequency and nearby frequencies.

Mathematical Model: After adaptation to frequency fadaptf_{\text{adapt}}: CSFadapted(f)=CSFbaseline(f)1+G(f,fadapt)\text{CSF}_{\text{adapted}}(f) = \frac{\text{CSF}_{\text{baseline}}(f)}{1 + G(f, f_{\text{adapt}})}

where G(f,fadapt)G(f, f_{\text{adapt}}) is the adaptation gain function: G(f,fadapt)=Ae(ln(f/fadapt)σ)2G(f, f_{\text{adapt}}) = A \cdot e^{-\left(\frac{\ln(f/f_{\text{adapt}})}{\sigma}\right)^2}

Parameters:

  • AA: Maximum adaptation effect
  • σ\sigma: Bandwidth of adaptation (typically σ1.4\sigma \approx 1.4 octaves)

Spatial Frequency Masking

Simultaneous Masking: Presence of one frequency component affects detection of another.

Mathematical Formulation: For target frequency ftf_t in presence of mask frequency fmf_m: Thresholdmasked(ft)=Thresholdunmasked(ft)[1+(CmCm,threshold)pW(ft,fm)]\text{Threshold}_{\text{masked}}(f_t) = \text{Threshold}_{\text{unmasked}}(f_t) \cdot \left[1 + \left(\frac{C_m}{C_{m,\text{threshold}}}\right)^p \cdot W(f_t, f_m)\right]

Masking Function: W(ft,fm)=e(ln(ft/fm)β)2W(f_t, f_m) = e^{-\left(\frac{\ln(f_t/f_m)}{\beta}\right)^2}

where β\beta determines the masking bandwidth (typically β1.5\beta \approx 1.5 octaves).

Multichannel Visual Processing Theory

Wilson-Gelb Model

Channel Definition: NN overlapping bandpass channels with center frequencies: fi=f02i/2,i=0,1,2,,N1f_i = f_0 \cdot 2^{i/2}, \quad i = 0, 1, 2, \ldots, N-1

Channel Response: Ri(f)=(f/fi)n1(f/fi)n1+11(f/fi)n2+1R_i(f) = \frac{(f/f_i)^{n_1}}{(f/f_i)^{n_1} + 1} \cdot \frac{1}{(f/f_i)^{n_2} + 1}

Parameters: Typically n1=2,n2=3n_1 = 2, n_2 = 3 for asymmetric bandpass characteristics.

Detection Probability Theory

Multiple Channel Decision: Detection occurs when any channel exceeds its threshold: Pdetection=1i=1N(1Pi)P_{\text{detection}} = 1 - \prod_{i=1}^N \left(1 - P_i\right)

where PiP_i is the detection probability for channel ii: Pi=12[1+erf(SiTi2σi)]P_i = \frac{1}{2}\left[1 + \text{erf}\left(\frac{S_i - T_i}{\sqrt{2}\sigma_i}\right)\right]

  • SiS_i: Signal strength in channel ii
  • TiT_i: Detection threshold for channel ii
  • σi\sigma_i: Internal noise in channel ii

Applications to Image Processing and Display Technology

Perceptually-Based Image Compression

Quantization Matrix Design: Based on CSF to minimize visible artifacts: Q(u,v)=Q0CSF(u2+v2)V(u,v)Q(u,v) = \frac{Q_0}{\text{CSF}(\sqrt{u^2 + v^2}) \cdot V(u,v)}

where V(u,v)V(u,v) accounts for viewing conditions and masking effects.

Display Calibration and Gamma Correction

Perceptual Uniformity: Ensure equal just-noticeable differences (JNDs) across gray levels: ΔL=kLγ\Delta L = k \cdot L^{\gamma}

where γ0.5\gamma \approx 0.5 for Weber-Fechner law approximation.

Mathematical Implementation: Ldisplay=Lmax(IdigitalImax)2.2L_{\text{display}} = L_{\text{max}} \left(\frac{I_{\text{digital}}}{I_{\text{max}}}\right)^{2.2}

This comprehensive mathematical framework demonstrates how psychophysical experiments revealed the Fourier-like processing capabilities of human vision, leading to quantitative models that inform modern image processing and display technologies.