Skip to content

Fourier Transform Properies

DTFT theory, existence conditions, Gibbs phenomenon

DSP

Table of Contents

Open Table of Contents

Existence Conditions for Discrete-Time Fourier Transform

Mathematical Conditions for DTFT Existence

The Discrete-Time Fourier Transform (DTFT) exists for a sequence x[n]x[n] if certain summability conditions are satisfied.

Absolutely Summable Sequences

Condition: n=x[n]<\sum_{n=-\infty}^{\infty} |x[n]| < \infty

Mathematical Guarantee: If x[n]x[n] is absolutely summable, then: X(ejω)=n=x[n]ejωnX(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

converges uniformly for all ω\omega, and X(ejω)X(e^{j\omega}) is continuous and bounded.

Examples:

  1. Exponential decay: x[n]=anu[n]x[n] = a^n u[n] where a<1|a| < 1
  2. Finite duration: x[n]=0x[n] = 0 for n>N|n| > N

Square Summable Sequences (Finite Energy)

Condition: n=x[n]2<\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty

Convergence: The DTFT exists in the mean-square sense: limNππX(ejω)n=NNx[n]ejωn2dω=0\lim_{N \to \infty} \int_{-\pi}^{\pi} \left|X(e^{j\omega}) - \sum_{n=-N}^{N} x[n] e^{-j\omega n}\right|^2 d\omega = 0

Critical Example: Ideal Low-Pass Filter hideal[n]=sin(ωcn)πn,n0h_{\text{ideal}}[n] = \frac{\sin(\omega_c n)}{\pi n}, \quad n \neq 0 hideal[0]=ωcπh_{\text{ideal}}[0] = \frac{\omega_c}{\pi}

Summability Analysis:

  • n=hideal[n]=\sum_{n=-\infty}^{\infty} |h_{\text{ideal}}[n]| = \infty (not absolutely summable)
  • n=hideal[n]2<\sum_{n=-\infty}^{\infty} |h_{\text{ideal}}[n]|^2 < \infty (square summable)

Gibbs Phenomenon: Mathematical Analysis

Definition and Cause

Gibbs Phenomenon occurs when approximating discontinuous functions with finite Fourier series. The overshoot near discontinuities does not diminish as more terms are added.

Mathematical Description: For a jump discontinuity, the maximum overshoot is approximately: Overshoot0.089×(Jump Height)\text{Overshoot} \approx 0.089 \times (\text{Jump Height})

This corresponds to about 8.9% overshoot regardless of the number of terms in the partial sum.

Ideal Low-Pass Filter Example

Frequency Response:

H(ejω)={1ωωc0ωc<ωπH(e^{j\omega}) = \begin{cases} 1 & |\omega| \leq \omega_c \\ 0 & \omega_c < |\omega| \leq \pi \end{cases}

Truncated Impulse Response:

hN[n]={sin(ωcn)πnnN0n>Nh_N[n] = \begin{cases} \frac{\sin(\omega_c n)}{\pi n} & |n| \leq N \\ 0 & |n| > N \end{cases}

Frequency Response of Truncated Filter: HN(ejω)=n=NNhN[n]ejωnH_N(e^{j\omega}) = \sum_{n=-N}^{N} h_N[n] e^{-j\omega n}

Gibbs Overshoot: Near ω=ωc\omega = \omega_c, the maximum overshoot is: maxωHN(ejω)1.089\max_{\omega} |H_N(e^{j\omega})| \approx 1.089

Key Insight: The height of ripples remains constant as NN \to \infty, but their width decreases, ensuring that the integral of the error converges to zero.

Fundamental Properties of the Discrete-Time Fourier Transform

1. Linearity Property

Mathematical Statement: ax1[n]+bx2[n]DTFTaX1(ejω)+bX2(ejω)ax_1[n] + bx_2[n] \xleftrightarrow{\text{DTFT}} aX_1(e^{j\omega}) + bX_2(e^{j\omega})

Proof: Direct from the definition of DTFT: F{ax1[n]+bx2[n]}=n=(ax1[n]+bx2[n])ejωn\mathcal{F}\{ax_1[n] + bx_2[n]\} = \sum_{n=-\infty}^{\infty} (ax_1[n] + bx_2[n]) e^{-j\omega n} =an=x1[n]ejωn+bn=x2[n]ejωn=aX1(ejω)+bX2(ejω)= a\sum_{n=-\infty}^{\infty} x_1[n] e^{-j\omega n} + b\sum_{n=-\infty}^{\infty} x_2[n] e^{-j\omega n} = aX_1(e^{j\omega}) + bX_2(e^{j\omega})

Applications:

  • Superposition principle for linear systems
  • Decomposition of complex signals into simpler components

2. Time Shifting Property

Mathematical Statement: x[nn0]DTFTejωn0X(ejω)x[n - n_0] \xleftrightarrow{\text{DTFT}} e^{-j\omega n_0} X(e^{j\omega})

Proof: F{x[nn0]}=n=x[nn0]ejωn\mathcal{F}\{x[n - n_0]\} = \sum_{n=-\infty}^{\infty} x[n - n_0] e^{-j\omega n}

Let m=nn0m = n - n_0, so n=m+n0n = m + n_0: =m=x[m]ejω(m+n0)=ejωn0m=x[m]ejωm=ejωn0X(ejω)= \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega (m + n_0)} = e^{-j\omega n_0} \sum_{m=-\infty}^{\infty} x[m] e^{-j\omega m} = e^{-j\omega n_0} X(e^{j\omega})

Physical Interpretation:

  • Magnitude: X(ejω)|X(e^{j\omega})| is unchanged
  • Phase: Adds linear phase ωn0-\omega n_0
  • Group Delay: τg=n0\tau_g = n_0 (constant delay)

3. Frequency Shifting Property (Modulation)

Mathematical Statement: ejω0nx[n]DTFTX(ej(ωω0))e^{j\omega_0 n} x[n] \xleftrightarrow{\text{DTFT}} X(e^{j(\omega - \omega_0)})

Proof: F{ejω0nx[n]}=n=ejω0nx[n]ejωn\mathcal{F}\{e^{j\omega_0 n} x[n]\} = \sum_{n=-\infty}^{\infty} e^{j\omega_0 n} x[n] e^{-j\omega n} =n=x[n]ej(ωω0)n=X(ej(ωω0))= \sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega - \omega_0) n} = X(e^{j(\omega - \omega_0)})

Applications:

  • Amplitude Modulation: cos(ω0n)x[n]12[X(ej(ωω0))+X(ej(ω+ω0))]\cos(\omega_0 n) x[n] \leftrightarrow \frac{1}{2}[X(e^{j(\omega - \omega_0)}) + X(e^{j(\omega + \omega_0)})]
  • Frequency Translation: Shifting spectra for communication systems

4. Conjugate Symmetry Property

For Real Sequences (x[n]Rx[n] \in \mathbb{R}): X(ejω)=X(ejω)X(e^{j\omega}) = X^*(e^{-j\omega})

Component-wise Analysis:

  • Magnitude: X(ejω)=X(ejω)|X(e^{j\omega})| = |X(e^{-j\omega})| (even function)
  • Phase: arg[X(ejω)]=arg[X(ejω)]\arg[X(e^{j\omega})] = -\arg[X(e^{-j\omega})] (odd function)
  • Real Part: Re[X(ejω)]=Re[X(ejω)]\text{Re}[X(e^{j\omega})] = \text{Re}[X(e^{-j\omega})] (even)
  • Imaginary Part: Im[X(ejω)]=Im[X(ejω)]\text{Im}[X(e^{j\omega})] = -\text{Im}[X(e^{-j\omega})] (odd)

Proof: For real x[n]x[n]: X(ejω)=(n=x[n]ejωn)=n=x[n]ejωn=X(ejω)X^*(e^{-j\omega}) = \left(\sum_{n=-\infty}^{\infty} x[n] e^{j\omega n}\right)^* = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} = X(e^{j\omega})

5. Time Reversal Property

Mathematical Statement: x[n]DTFTX(ejω)x[-n] \xleftrightarrow{\text{DTFT}} X(e^{-j\omega})

Proof: F{x[n]}=n=x[n]ejωn\mathcal{F}\{x[-n]\} = \sum_{n=-\infty}^{\infty} x[-n] e^{-j\omega n}

Let m=nm = -n, so n=mn = -m: =m=x[m]ejωm=X(ejω)= \sum_{m=-\infty}^{\infty} x[m] e^{j\omega m} = X(e^{-j\omega})

Graphical Interpretation: Time reversal corresponds to frequency reversal.

6. Differentiation in Frequency

Mathematical Statement: nx[n]DTFTjddωX(ejω)n x[n] \xleftrightarrow{\text{DTFT}} j \frac{d}{d\omega} X(e^{j\omega})

Proof: Starting with the DTFT definition: X(ejω)=n=x[n]ejωnX(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}

Differentiating both sides with respect to ω\omega: ddωX(ejω)=n=x[n]ddωejωn=n=x[n](jn)ejωn\frac{d}{d\omega} X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] \frac{d}{d\omega} e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x[n] (-jn) e^{-j\omega n} =jn=nx[n]ejωn=jF{nx[n]}= -j \sum_{n=-\infty}^{\infty} n x[n] e^{-j\omega n} = -j \mathcal{F}\{n x[n]\}

Therefore: F{nx[n]}=jddωX(ejω)\mathcal{F}\{n x[n]\} = j \frac{d}{d\omega} X(e^{j\omega})

Applications:

  • Computing moments of signals
  • Analyzing signal energy distribution

7. Parseval’s Theorem

Mathematical Statement: n=x[n]2=12πππX(ejω)2dω\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega

Physical Interpretation: Total energy in time domain equals total energy in frequency domain.

Proof: Using the inverse DTFT: x[n]=12πππX(ejω)ejωndωx[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega

The energy is: n=x[n]2=n=x[n]x[n]\sum_{n=-\infty}^{\infty} |x[n]|^2 = \sum_{n=-\infty}^{\infty} x[n] x^*[n] =n=x[n](12πππX(ejω)ejωndω)= \sum_{n=-\infty}^{\infty} x[n] \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} X^*(e^{j\omega}) e^{-j\omega n} d\omega\right) =12πππX(ejω)(n=x[n]ejωn)dω= \frac{1}{2\pi} \int_{-\pi}^{\pi} X^*(e^{j\omega}) \left(\sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}\right) d\omega =12πππX(ejω)2dω= \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega

8. Generalized Parseval’s Theorem (Cross-Correlation)

Mathematical Statement: n=x1[n]x2[n]=12πππX1(ejω)X2(ejω)dω\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega

Applications:

  • Cross-correlation in frequency domain
  • Matched filtering for signal detection
  • Power spectral density calculations

9. Convolution Theorem

Mathematical Statement: x1[n]x2[n]DTFTX1(ejω)X2(ejω)x_1[n] * x_2[n] \xleftrightarrow{\text{DTFT}} X_1(e^{j\omega}) \cdot X_2(e^{j\omega})

Proof: F{x1[n]x2[n]}=F{k=x1[k]x2[nk]}\mathcal{F}\{x_1[n] * x_2[n]\} = \mathcal{F}\left\{\sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]\right\} =n=(k=x1[k]x2[nk])ejωn= \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x_1[k] x_2[n-k]\right) e^{-j\omega n}

Changing the order of summation: =k=x1[k]n=x2[nk]ejωn= \sum_{k=-\infty}^{\infty} x_1[k] \sum_{n=-\infty}^{\infty} x_2[n-k] e^{-j\omega n}

Using the time-shifting property: =k=x1[k]ejωkX2(ejω)=X1(ejω)X2(ejω)= \sum_{k=-\infty}^{\infty} x_1[k] e^{-j\omega k} X_2(e^{j\omega}) = X_1(e^{j\omega}) X_2(e^{j\omega})

Dual Property: x1[n]x2[n]DTFT12πX1(ejω)X2(ejω)x_1[n] \cdot x_2[n] \xleftrightarrow{\text{DTFT}} \frac{1}{2\pi} X_1(e^{j\omega}) * X_2(e^{j\omega})

10. Filter Design Applications

High-Pass from Low-Pass Transformation

Method 1: Spectral Inversion If hLP[n]h_{LP}[n] is a low-pass filter, then: hHP[n]=δ[n]hLP[n]h_{HP}[n] = \delta[n] - h_{LP}[n]

Frequency Domain: HHP(ejω)=1HLP(ejω)H_{HP}(e^{j\omega}) = 1 - H_{LP}(e^{j\omega})

Method 2: Frequency Shifting hHP[n]=(1)nhLP[n]=ejπnhLP[n]h_{HP}[n] = (-1)^n h_{LP}[n] = e^{j\pi n} h_{LP}[n]

Frequency Domain: HHP(ejω)=HLP(ej(ωπ))H_{HP}(e^{j\omega}) = H_{LP}(e^{j(\omega - \pi)})

This shifts the low-pass response by π\pi radians, converting passband to stopband and vice versa.

Band-Pass Filter Design

Method: Combine frequency shifting with low-pass prototype: hBP[n]=2hLP[n]cos(ω0n)h_{BP}[n] = 2h_{LP}[n] \cos(\omega_0 n)

where ω0\omega_0 is the center frequency and hLP[n]h_{LP}[n] has cutoff ωc\omega_c.

Result: Band-pass filter centered at ω0\omega_0 with bandwidth 2ωc2\omega_c.

Advanced DTFT Concepts and Applications

Fourier Transform of Periodic Sequences

Mathematical Treatment

For a periodic sequence x[n]x[n] with period NN: x[n+N]=x[n] for all nx[n + N] = x[n] \text{ for all } n

The DTFT contains impulses (Dirac deltas) at harmonic frequencies: X(ejω)=2πk=0N1X[k]δ(ω2πkN)X(e^{j\omega}) = 2\pi \sum_{k=0}^{N-1} X[k] \delta(\omega - \frac{2\pi k}{N})

where X[k]X[k] are the Discrete Fourier Series (DFS) coefficients: X[k]=1Nn=0N1x[n]ej2πkn/NX[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j2\pi kn/N}

Connection to DFS and DFT

Discrete Fourier Series: Represents periodic sequences in frequency domain Discrete Fourier Transform: Computes samples of DTFT for finite-length sequences

Relationship: DFT is samples of DTFT: X[k]=X(ejω)ω=2πk/NX[k] = X(e^{j\omega})\Big|_{\omega = 2\pi k/N}

Windowing Effects and Spectral Leakage

Rectangular Window Analysis

When analyzing finite-length data, we implicitly multiply by a rectangular window: xw[n]=x[n]w[n]x_w[n] = x[n] \cdot w[n]

where w[n]=1w[n] = 1 for 0nN10 \leq n \leq N-1 and w[n]=0w[n] = 0 elsewhere.

Frequency Domain Effect: Xw(ejω)=12πX(ejω)W(ejω)X_w(e^{j\omega}) = \frac{1}{2\pi} X(e^{j\omega}) * W(e^{j\omega})

Rectangular Window DTFT: W(ejω)=ejω(N1)/2sin(ωN/2)sin(ω/2)W(e^{j\omega}) = e^{-j\omega(N-1)/2} \frac{\sin(\omega N/2)}{\sin(\omega/2)}

Spectral Leakage Phenomenon

Cause: Windowing spreads spectral energy from discrete frequencies across the frequency spectrum.

Mathematical Description: A pure sinusoid becomes: cos(ω0n)12πsin(ωN/2)sin(ω/2)[δ(ωω0)+δ(ω+ω0)]\cos(\omega_0 n) \rightarrow \frac{1}{2\pi} \cdot \frac{\sin(\omega N/2)}{\sin(\omega/2)} * [\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]

Mitigation Strategies:

  1. Longer observation windows (reduce main lobe width)
  2. Smooth window functions (reduce side lobe levels)
  3. Zero-padding (interpolate spectrum)

Sampling Theory and Aliasing

Discrete-Time Sampling of Continuous-Time Signals

Sampling Relationship: x[n]=xc(nT)x[n] = x_c(nT)

where xc(t)x_c(t) is the continuous-time signal and TT is the sampling period.

Frequency Domain Relationship: X(ejω)=1Tk=Xc(jω2πkT)X(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c\left(j\frac{\omega - 2\pi k}{T}\right)

Nyquist Criterion and Anti-Aliasing

Nyquist Frequency: ωN=π\omega_N = \pi (normalized) or fN=12Tf_N = \frac{1}{2T} Hz

Aliasing Condition: If Xc(jΩ)0X_c(j\Omega) \neq 0 for Ω>π/T|\Omega| > \pi/T, then aliasing occurs.

Anti-Aliasing Filter: Low-pass filter with cutoff at π/T\pi/T before sampling:

HAA(jΩ)={TΩπ/T0Ω>π/TH_{AA}(j\Omega) = \begin{cases} T & |\Omega| \leq \pi/T \\ 0 & |\Omega| > \pi/T \end{cases}

Z-Transform Relationship

Connection to DTFT

The Z-transform is a generalization of the DTFT: X(z)=n=x[n]znX(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}

DTFT as Special Case: X(ejω)=X(z)z=ejωX(e^{j\omega}) = X(z)\Big|_{z = e^{j\omega}}

Region of Convergence (ROC)

Absolute Convergence: n=x[n]rn<\sum_{n=-\infty}^{\infty} |x[n] r^{-n}| < \infty for rr in ROC

DTFT Existence: DTFT exists if and only if unit circle is in ROC

Poles and Zeros Analysis

Rational Z-Transform: H(z)=k=0Mbkzkk=0Nakzk=B(z)A(z)H(z) = \frac{\sum_{k=0}^M b_k z^{-k}}{\sum_{k=0}^N a_k z^{-k}} = \frac{B(z)}{A(z)}

Frequency Response: H(ejω)H(e^{j\omega}) obtained by evaluating H(z)H(z) on unit circle

Geometric Interpretation:

  • Zeros: Points where H(z)=0H(z) = 0
  • Poles: Points where H(z)=H(z) = \infty
  • Magnitude: Distance from unit circle to poles/zeros affects H(ejω)|H(e^{j\omega})|

This comprehensive framework provides the mathematical foundation for advanced digital signal processing techniques and applications in communications, audio processing, and system analysis.