Gautham Anne
EE 381: Electronic Properties of Materials
11/01/2025
Homework 5

PROBLEM 1

Infinitely deep 1D quantum well of width L = 2 nm = 2 x 109 m. Levels m = 1,2, 3 are completely
filled, level m > 4 are empty. Electron mass is the free electron mass m..
We will use

h=1.0545718 x 107 J 5, h=6.62607015 x 107 J s, m, =9.10938356 x 107*' ke,

The electron density is given: N =5 x 10® em™ =5 x 10** m=3.

(a). For an infinite well with walls at = 0 and « = L, the mth stationary state has m half- wavelengths

that fit inside the well:
A L 2L

2 m m
So, as a function of m and L,
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For L = 2 nm this gives \,, = —

(eg. m=1=4nm, m=2=2nm, m=3= 1333 nm, ...).

(b). The wave number is k = 27/, so

The normalized eigenfunction is

Ym () = \/zsin<mz$> : 0<z<L.

(c). The energy of the mth level is

B thrQn B h2 <77”L7T>2_ h271'2 )
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Plugging L = 2 x 107 m and the constants yields:

Ey =~ 0.0940 eV, F; ~0.3760 ¢V, FE3~0.8461 eV, FE;~1.5041¢eV, FE5~ 2.3502 ¢eV.

So the general result is
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h = 6.62607015e-34;
hbar = 1.054571817e-34;
me = 9.10938356e-31;

Tt = W N

L = 2e-9;
eV = 1.602176634e-19;
6lm = 1:5;
71Em = (h™2 .* m.~2) ./ (8*mexL"2) / eV; % in eV
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disp (Em)
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(d) Permittivity vs. light frequency. Only transitions from occupied to empty levels contribute. Since
m = 1,2, 3 are filled and m > 4 is empty, look at 3 =+ 4,2 — 4, 1 — 4, 3 — 5, etc. Transition energies:

AFs; ., =FE,— FE3=1.5041 — 0.8461 =~ 0.6580 eV.
The corresponding frequency is
AEs5;  0.6580 x 1.602 x 10~
Jar = = ™ T 626 x 1079
which lies in the specified range. All other allowed transitions from filled levels (1 — 4,2 — 4, 3 — 5, ...)

end up at higher frequencies (> 2 x 10* Hz). Therefore, over the given frequency range the only
relevant transition is 3 — 4.

~ 1.59 x 10 Hz,

wsy = 27 f34 = 21 x 1.59 x 10'* rad/s.
So that .
Tpi = / x Yy (x) () de.
0
For infinite wells, a standard integral gives

s G 1= 1)

Nonzero only when n +m is odd. For n =4, m = 3 we get

(nfzm) =

°L 4.3 2L 12 ASL
Alzf3y =20 1o~y =202 0
Wel3) = g o 0~V =57 4972
At L =2 nm,
48(2 x 10~
(4lf3)] = BEXI0T) 567 5 10719 1 = 0.397 nm.
4972

Homogenous broadening (half-width) is T' = 1 meV = 1072 eV. In joules this is Iy = 1073 x 1.602 x
1071 &~ 1.602 x 10722 J. The corresponding damping rate is

r
N = ?" ~ 1.52 x 102 s~

For a single transition m — n in the dipole approximation,

(o) = Nellelm) ( 1 1 ) |

eoh wnm—w—z’fy_wnm+w+i’y

and the permittivity is e(w) = €o [1 + x(w)] (I'm taking background to be 1).
Separating real and imaginary parts (still for one transition):

Neé?|(n|z|m)|? W — W W + W
Ri = 1 _
ofe(w)) = e |1+ = I (s e ),
Ne?[(n|z|m)|* gl gl
I = — .
mie(w)} =<0 goh ((wnm —w)? 49?2 (Wpm W)+ 72)

In my script, I just plug in (n,m) = (4, 3).

1lepsO = 8.8541878128e-12;

2le = 1.602176634e-19;

3lh = 6.62607015e-34;

i/hbar = 1.054571817e-34;

5/me = 9.10938356e-31;

6|L = 2e-9;

7IN = be24; % m~-3

8| x43 = 96%L/(49%pi~2); % same as 48L/(49pi~2), numerically ~3.97e-10 m




10| E3 0.8460678790%*¢e;
11|E4 = 1.5041206738%*¢;
12|dE = E4 - E3;

13 omega0 = dE / hbar; % rad/s
14

15| Gamma_eV = 1e-3;

16| gamma = (Gamma_eV*e)/hbar;

18|f = linspace(leld, 2el14, 1000);
19| omega = 2*pixf;

I|pref = Nxe~2%xx4372/(epsOx*hbar) ;
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22/ chi = pref.*( 1./(omega0 - omega - li*gamma)

23 - 1./(omega0 + omega + li*gamma) ) ;
24| eps_complex = epsO0*(1 + chi);

o5

26| eps_real = real(eps_complex);

27| eps_imag = imag(eps_complex);

Maximum optical absorption coefficient.

—
o
~

alw) = %Im{n(w)}, n(w) = o

Evaluating this numerically gives a peak at the transition frequency f ~ 1.59 x 104 Hz, with
Omax & 9.7 x 10° m™" = 9.7 x 10* em ™.

So,

Omax =~ 1 % 10° em ™" at f ~ 1.59 x 10* Hz.

c = 299792458;

n_complex = sqrt(eps_complex/eps0);

alpha = omega./c .* imag(n_complex); % 1/m

[alpha_max, idx] = max(alpha);

f_at_max = f(idx);

fprintf ( , alpha_max, f_at_max);
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(f) Matching to a classical bound-electron model. A classical oscillator for number density N, has

N,e? 1
Xcl (w> -

EoMe Wi — w2 —iv'w’

with resonance wy, damping 7" and spring constant k = m.w3.

Near resonance (w = wy), this becomes

() N, e? 1
alw) ~ , )
Ael 2e0mewn Wy — w — 1y /2

And our previous quantum mechanical expression near resonance (3 — 4) is

Ne?|(4]z]3)? 1
qu(w> ~ €0h

W3y —w — iy

Matching the coefficients and the linewidths gives
2m.ewo (4] z|3) |2

N 2 2 2
W N3 NN |
280mew0 €0h h




and to match the linewidths

— =7 = v =2y

Using the numbers above:
Wo = wag ~ 21 x 1.59 x 10™ rad/s,
[(4]2]3)| ~ 3.97 x 1071° m,
N=5x10*m™, m,=9.11x 1073 kg.
This gives
N, ~ 1.36 x 10* m~3,

so of the same order (but a bit larger than) the actual electron density in the well.

The resonance frequency in Hz is

fo= 20 ~1.59 x 10" Hy,
2T

the damping is

v~ 3.0 x 10" 57,

and the corresponding spring constant in the classical picture is

k =mw] ~0.91 N/m.

So the best fit parameters to the classical model to emulate the quantum 3 — 4 transition are roughly

N, ~14x10® m™®, fo~1.6x 10" Hz, 7/ ~3x10"”%s™!, k~0.9 N/m.




	Problem 1
	(a)
	(b)
	(c)
	(d) Permittivity vs. light frequency
	(e) Maximum optical absorption coefficient
	(f) Matching to a classical bound-electron model


