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Homework 5

Problem 1

Infinitely deep 1D quantum well of width L = 2 nm = 2 × 10−9 m. Levels m = 1, 2, 3 are completely
filled, level m ≥ 4 are empty. Electron mass is the free electron mass me.

We will use

~ = 1.054 571 8 × 10−34 J · s, h = 6.626 070 15 × 10−34 J · s, me = 9.109 383 56 × 10−31 kg.

The electron density is given: N = 5 × 1018 cm−3 = 5 × 1024 m−3.

(a). For an infinite well with walls at x = 0 and x = L, the mth stationary state has m half- wavelengths
that fit inside the well:

λm

2 = L

m
=⇒ λm = 2L

m
.

So, as a function of m and L,

λm = 2L
m

.

For L = 2 nm this gives λm = 4 nm
m

(e.g. m = 1 ⇒ 4 nm, m = 2 ⇒ 2 nm, m = 3 ⇒ 1.333 nm, ...).

(b). The wave number is k = 2π/λ, so

km = 2π
λm

= 2π
2L/m = mπ

L
.

The normalized eigenfunction is

ψm(x) =
√

2
L

sin
(
mπx

L

)
, 0 < x < L.

(c). The energy of the mth level is

Em = ~2k2
m

2me

= ~2

2me

(
mπ

L

)2
= ~2π2

2meL2m
2.

Plugging L = 2 × 10−9 m and the constants yields:

E1 ≈ 0.0940 eV, E2 ≈ 0.3760 eV, E3 ≈ 0.8461 eV, E4 ≈ 1.5041 eV, E5 ≈ 2.3502 eV.

So the general result is

Em = ~2π2

2meL2m
2.

1 h = 6.62607015e-34;
2 hbar = 1.054571817e-34;
3 me = 9.10938356e-31;
4 L = 2e-9;
5 eV = 1.602176634e-19;
6 m = 1:5;
7 Em = (h^2 .* m.^2) ./ (8*me*L^2) / eV; % in eV
8 disp(Em)
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(d) Permittivity vs. light frequency. Only transitions from occupied to empty levels contribute. Since
m = 1, 2, 3 are filled and m ≥ 4 is empty, look at 3 → 4, 2 → 4, 1 → 4, 3 → 5, etc. Transition energies:

∆E3→4 = E4 − E3 = 1.5041 − 0.8461 ≈ 0.6580 eV.
The corresponding frequency is

f34 = ∆E34

h
≈ 0.6580 × 1.602 × 10−19

6.626 × 10−34 ≈ 1.59 × 1014 Hz,

which lies in the specified range. All other allowed transitions from filled levels (1 → 4, 2 → 4, 3 → 5, …)
end up at higher frequencies (> 2 × 1014 Hz). Therefore, over the given frequency range the only
relevant transition is 3 → 4.

ω34 = 2πf34 ≈ 2π × 1.59 × 1014 rad/s.
So that

xni =
∫ L

0
xψn(x)ψi(x) dx.

For infinite wells, a standard integral gives

〈n|x|m〉 = 2L
π2

nm

(n2 −m2)2

[
1 − (−1)n+m

]
.

Nonzero only when n+m is odd. For n = 4, m = 3 we get

〈4|x|3〉 = 2L
π2

4 · 3
(16 − 9)2 (1 − (−1)7) = 2L

π2
12
72 · 2 = 48L

49π2 .

At L = 2 nm,

|〈4|x|3〉| = 48(2 × 10−9)
49π2 ≈ 3.97 × 10−10 m = 0.397 nm.

Homogenous broadening (half-width) is Γ = 1 meV = 10−3 eV. In joules this is ΓJ = 10−3 × 1.602 ×
10−19 ≈ 1.602 × 10−22 J. The corresponding damping rate is

γ = ΓJ

~
≈ 1.52 × 1012 s−1.

For a single transition m → n in the dipole approximation,

χ(ω) = Ne2|〈n|x|m〉|2

ε0~

(
1

ωnm − ω − iγ
− 1
ωnm + ω + iγ

)
,

and the permittivity is ε(ω) = ε0 [1 + χ(ω)] (I’m taking background to be 1).
Separating real and imaginary parts (still for one transition):

Re{ε(ω)} = ε0

1 + Ne2|〈n|x|m〉|2

ε0~

(
ωnm − ω

(ωnm − ω)2 + γ2 − ωnm + ω

(ωnm + ω)2 + γ2

),
Im{ε(ω)} = ε0

Ne2|〈n|x|m〉|2

ε0~

(
γ

(ωnm − ω)2 + γ2 − γ

(ωnm + ω)2 + γ2

)
.

In my script, I just plug in (n,m) = (4, 3).

1 eps0 = 8.8541878128e-12;
2 e = 1.602176634e-19;
3 h = 6.62607015e-34;
4 hbar = 1.054571817e-34;
5 me = 9.10938356e-31;
6 L = 2e-9;
7 N = 5e24; % m^-3
8 x43 = 96*L/(49*pi^2); % same as 48L/(49pi^2), numerically ~3.97e-10 m
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9
10 E3 = 0.8460678790*e;
11 E4 = 1.5041206738*e;
12 dE = E4 - E3;
13 omega0 = dE / hbar; % rad/s
14
15 Gamma_eV = 1e-3;
16 gamma = (Gamma_eV*e)/hbar;
17
18 f = linspace(1e14, 2e14, 1000);
19 omega = 2*pi*f;
20
21 pref = N*e^2*x43^2/(eps0*hbar);
22 chi = pref.*( 1./(omega0 - omega - 1i*gamma) ...
23 - 1./(omega0 + omega + 1i*gamma) );
24 eps_complex = eps0*(1 + chi);
25
26 eps_real = real(eps_complex);
27 eps_imag = imag(eps_complex);

(e) Maximum optical absorption coefficient.

α(ω) = ω

c
Im{n(ω)}, n(ω) =

√
ε(ω)
ε0

.

Evaluating this numerically gives a peak at the transition frequency f ≈ 1.59 × 1014 Hz, with
αmax ≈ 9.7 × 106 m−1 = 9.7 × 104 cm−1.

So,
αmax ≈ 1 × 105 cm−1 at f ≈ 1.59 × 1014 Hz.

1 c = 299792458;
2 n_complex = sqrt(eps_complex/eps0);
3 alpha = omega./c .* imag(n_complex); % 1/m
4 [alpha_max , idx] = max(alpha);
5 f_at_max = f(idx);
6 fprintf('alpha_max = %.3e 1/m at f = %.3e Hz\n', alpha_max , f_at_max);

(f) Matching to a classical bound-electron model. A classical oscillator for number density Na has

χcl(ω) = Nae
2

ε0me

1
ω2

0 − ω2 − iγ′ω
,

with resonance ω0, damping γ′ and spring constant k = meω
2
0.

Near resonance (ω ≈ ω0), this becomes

χcl(ω) ≈ Nae
2

2ε0meω0

1
ω0 − ω − iγ′/2 .

And our previous quantum mechanical expression near resonance (3 → 4) is

χqm(ω) ≈ Ne2|〈4|x|3〉|2

ε0~
1

ω34 − ω − iγ
.

Matching the coefficients and the linewidths gives

Nae
2

2ε0meω0
= Ne2|〈4|x|3〉|2

ε0~
=⇒ Na = N

2meω0|〈4|x|3〉|2

~
,
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and to match the linewidths
γ′

2 = γ =⇒ γ′ = 2γ .
Using the numbers above:

ω0 = ω34 ≈ 2π × 1.59 × 1014 rad/s,
|〈4|x|3〉| ≈ 3.97 × 10−10 m,

N = 5 × 1024 m−3, me = 9.11 × 10−31 kg.
This gives

Na ≈ 1.36 × 1025 m−3,

so of the same order (but a bit larger than) the actual electron density in the well.
The resonance frequency in Hz is

f0 = ω0

2π ≈ 1.59 × 1014 Hz,

the damping is
γ′ ≈ 3.0 × 1012 s−1,

and the corresponding spring constant in the classical picture is

k = meω
2
0 ≈ 0.91 N/m.

So the best fit parameters to the classical model to emulate the quantum 3 → 4 transition are roughly

Na ' 1.4 × 1025 m−3, f0 ' 1.6 × 1014 Hz, γ′ ' 3 × 1012 s−1, k ' 0.9 N/m.


	Problem 1
	(a)
	(b)
	(c)
	(d) Permittivity vs. light frequency
	(e) Maximum optical absorption coefficient
	(f) Matching to a classical bound-electron model


