

Homework 1

1. FREE ELECTRON: RELATION BETWEEN E AND k

Classical \rightarrow de Broglie. For a free electron ($V = 0$) the classical kinetic energy is

$$E = \frac{p^2}{2m}.$$

De Broglie gives $p = h/\lambda = \hbar k$ (with $k = 2\pi/\lambda$). Hence

$$E = \frac{\hbar^2 k^2}{2m}.$$

Schrödinger derivation. The time-dependent Schrödinger equation with $V = 0$ is

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi.$$

Insert a plane wave $\psi(\mathbf{r}, t) = e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$:

$$i\hbar(-i\omega)\psi = \frac{\hbar^2}{2m}(k^2)\psi \quad \Rightarrow \quad \hbar\omega = \frac{\hbar^2 k^2}{2m}.$$

Identifying $E = \hbar\omega$ gives the same dispersion,

$$E = \frac{\hbar^2 k^2}{2m}.$$

2. KRONIG–PENNEY SQUARE-WAVE POTENTIAL (PERIOD $P = 5 \text{ nm}$)

Setup. One period consists of a *well* of width $a = 4 \text{ nm}$ with $U = 0$ and a barrier of width $b = 1 \text{ nm}$ with $U_0 = 1 \text{ eV}$. Let $m = m_e$. For a piecewise-constant periodic potential, Bloch's theorem yields the Kronig–Penney dispersion

$$\cos(k_B P) = \begin{cases} \cos(k_1 a) \cosh(\kappa b) - \frac{k_1^2 - \kappa^2}{2k_1 \kappa} \sin(k_1 a) \sinh(\kappa b), & E < U_0, \\ \cos(k_1 a) \cos(k_2 b) - \frac{k_1^2 + k_2^2}{2k_1 k_2} \sin(k_1 a) \sin(k_2 b), & E > U_0, \end{cases}$$

with

$$k_1 = \frac{\sqrt{2mE}}{\hbar}, \quad \kappa = \frac{\sqrt{2m(U_0 - E)}}{\hbar}, \quad k_2 = \frac{\sqrt{2m(E - U_0)}}{\hbar}.$$

Allowed energies (bands) satisfy $|\cos(k_B P)| \leq 1$; otherwise the energy is forbidden (gap).

Can an electron with $E > U_0$ take any energy? No. Even for $E > U_0$ both regions are propagating, but the periodic modulation produces Bragg scattering and band gaps. Thus *some* energies above 1 eV are still forbidden: only those giving $|\cos(k_B P)| \leq 1$ are allowed.

Numerical check at $E = 1.05$ eV. Constants used: $\hbar = 1.0545718 \times 10^{-34}$ J s, $m_e = 9.1093836 \times 10^{-31}$ kg, $1 \text{ eV} = 1.6021766 \times 10^{-19}$ J.

For $E = 1.05$ eV ($> U_0$):

$$k_1 = \frac{\sqrt{2m_e E}}{\hbar} \approx 5.2497 \times 10^9 \text{ m}^{-1}, \quad k_1 a \approx 20.999,$$

$$k_2 = \frac{\sqrt{2m_e (E - U_0)}}{\hbar} \approx 1.1456 \times 10^9 \text{ m}^{-1}, \quad k_2 b \approx 1.1456.$$

Plugging these into the $E > U_0$ formula,

$$\cos(k_B P) = \cos(k_1 a) \cos(k_2 b) - \frac{k_1^2 + k_2^2}{2k_1 k_2} \sin(k_1 a) \sin(k_2 b) \approx -2.056.$$

Since $|\cos(k_B P)| \approx 2.056 > 1$, $E = 1.05$ eV is **forbidden** (lies in a band gap).

First few Band Ranges. Evaluating $|\cos(k_B P)| \leq 1$ over energy shows alternating allowed/forbidden intervals. For this geometry, the first several allowed bands (rounded) are

$$\begin{aligned} 0.01946\text{--}0.01954 \text{ eV}, \quad 0.07766\text{--}0.07804 \text{ eV}, \quad 0.17406\text{--}0.17512 \text{ eV}, \\ 0.30755\text{--}0.31008 \text{ eV}, \quad 0.47587\text{--}0.48175 \text{ eV}, \quad 0.67405\text{--}0.68826 \text{ eV}, \\ 0.88954\text{--}0.92658 \text{ eV}, \quad 1.09322\text{--}1.19190 \text{ eV}, \quad 1.26333\text{--}1.44557 \text{ eV}, \quad 1.47701\text{--}1.69817 \text{ eV}, \dots \end{aligned}$$