

Homework 7

PROBLEM 8.21

(a) We want a sequence $\tilde{y}_1[n]$ whose DFS is

$$\tilde{Y}_1[k] = \tilde{X}_1[k]\tilde{X}_2[k].$$

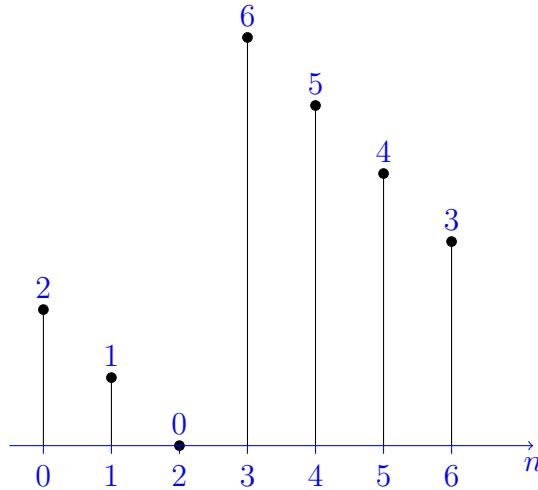
For $N = 7$, multiplication in the DFS domain corresponds to periodic convolution:

$$\tilde{y}_1[n] = \sum_{m=0}^6 \tilde{x}_1[m]\tilde{x}_2[n-m].$$

The signal $\tilde{x}_2[n]$ is a periodic impulse at $n \equiv 2 \pmod{7}$, so convolution shifts $\tilde{x}_1[n]$ by 2. Thus

$$\tilde{y}_1[n] = \tilde{x}_1[n-2].$$

A stem plot for one period, with labels, is shown below.



(b) The DFS of $\tilde{x}_3[n]$ is

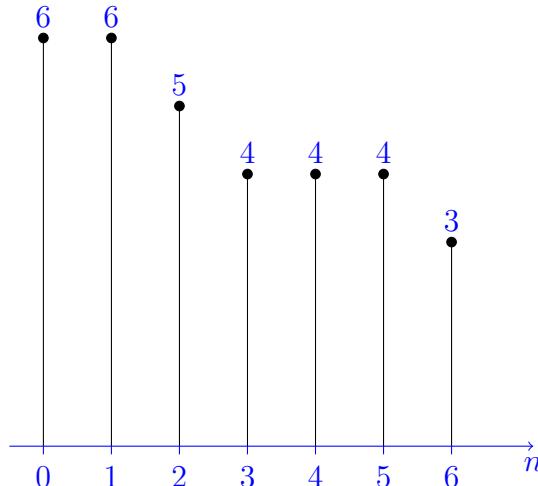
$$\tilde{X}_3[k] = 1 + W_7^{4k}.$$

Then

$$\tilde{Y}_2[k] = \tilde{X}_1[k]\tilde{X}_3[k] = \tilde{X}_1[k] + W_7^{4k}\tilde{X}_1[k].$$

Multiplying by W_7^{4k} corresponds to shifting by 4, so

$$\tilde{y}_2[n] = \tilde{x}_1[n] + \tilde{x}_1[n-4].$$



PROBLEM 8.23

The six-point sequence $x[n]$ from Fig. P23 is

$$x[0] = 4, \quad x[1] = 3, \quad x[2] = 2, \quad x[3] = 1,$$

and all other samples (up to $n = 5$) are zero.

(a). We are told that

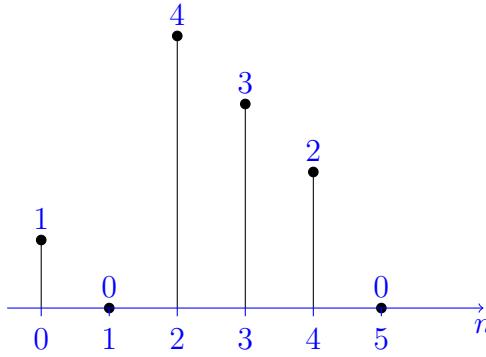
$$Y[k] = W_6^{5k} X[k],$$

which is a circular time-shift property. Since multiplying by W_6^{5k} corresponds to a shift by +5 samples (modulo 6), the sequence is

$$y[n] = x[n - 5].$$

Thus $y[n]$ is $x[n]$ shifted to the right by 5, or equivalently by -1 .

$$y[0] = 1, \quad y[1] = 0, \quad y[2] = 4, \quad y[3] = 3, \quad y[4] = 2, \quad y[5] = 0.$$



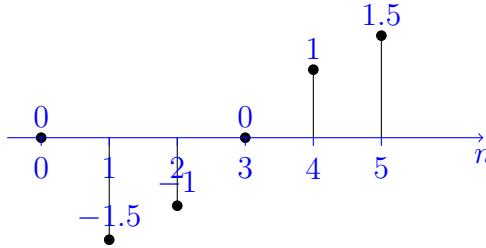
(b). Now

$$W[k] = \text{Im}\{X[k]\}.$$

The inverse six-point DFT gives

$$w[n] = \text{Im}\{x_{\text{sym}}[n]\} = \{0, -\frac{3}{2}, -j, 0, j, \frac{3j}{2}\},$$

with indices $n = 0, \dots, 5$.



(c). Given

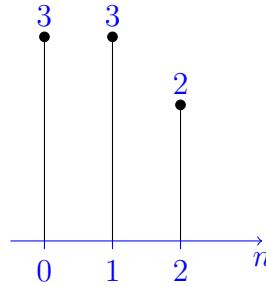
$$Q[k] = X[2k + 1], \quad k = 0, 1, 2,$$

which samples $X[k]$ at odd indices. The computation in the text gives

$$Q[k] = 3 + 3e^{-j\pi k/3} + 2e^{-j2\pi k/3}.$$

The inverse three-point DFT results in the sequence

$$q[0] = 3, \quad q[1] = 3e^{-j\pi/3}, \quad q[2] = 2e^{-j2\pi/3}.$$



PROBLEM 8.31

Given

$$x[n] = 2\delta[n] + \delta[n-1] - \delta[n-2].$$

(a). The DTFT of $x[n]$ is

$$X(e^{j\omega}) = 2 + e^{-j\omega} - e^{-j2\omega}.$$

If $y[n] = x[-n]$, then by the time-reversal property

$$Y(e^{j\omega}) = X(e^{-j\omega}) = 2 + e^{j\omega} - e^{j2\omega}.$$

(b). We now form

$$W(e^{j\omega}) = X(e^{j\omega})Y(e^{j\omega}) = (2 + e^{-j\omega} - e^{-j2\omega})(2 + e^{j\omega} - e^{j2\omega}).$$

Multiplying the two factors gives

$$\begin{aligned} W(e^{j\omega}) &= 4 + 2e^{-j\omega} - 2e^{-j2\omega} + 2e^{j\omega} + 1 - e^{-j\omega} - 2e^{j2\omega} - e^{j\omega} + e^{-j2\omega} \\ &= -2e^{j2\omega} + e^{j\omega} + 6 + e^{-j\omega} - 2e^{-j2\omega}. \end{aligned}$$

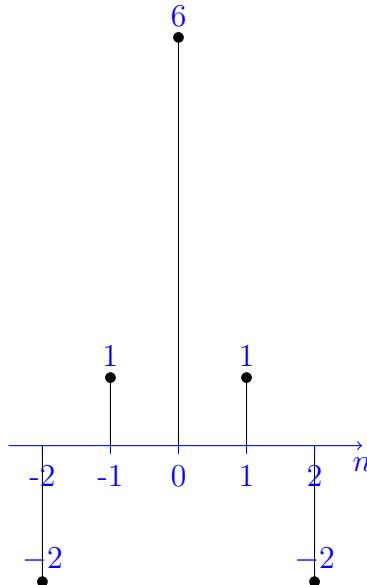
(c). From the form of $W(e^{j\omega})$ we can see $w[n] = x[n] * y[n]$:

$$w[n] = -2\delta[n+2] + \delta[n+1] + 6\delta[n] + \delta[n-1] - 2\delta[n-2].$$

So

$$w[-2] = -2, \quad w[-1] = 1, \quad w[0] = 6, \quad w[1] = 1, \quad w[2] = -2,$$

and $w[n] = 0$ otherwise.



(d). Now define

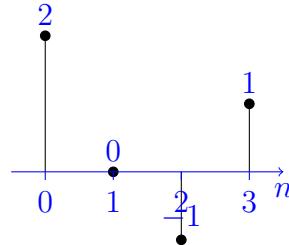
$$y_p[n] = x[((-n))_4], \quad 0 \leq n \leq 3,$$

where $((\cdot))_4$ means modulo 4. We first write $x[n]$ over one period of length 4:

$$x[0] = 2, \quad x[1] = 1, \quad x[2] = -1, \quad x[3] = 0.$$

Then

$$\begin{aligned} y_p[0] &= x[0] = 2, \\ y_p[1] &= x[(-1)_4] = x[3] = 0, \\ y_p[2] &= x[(-2)_4] = x[2] = -1, \\ y_p[3] &= x[(-3)_4] = x[1] = 1. \end{aligned}$$



(e). We now form the 4-point circular convolution of $x[n]$ with $y_p[n]$:

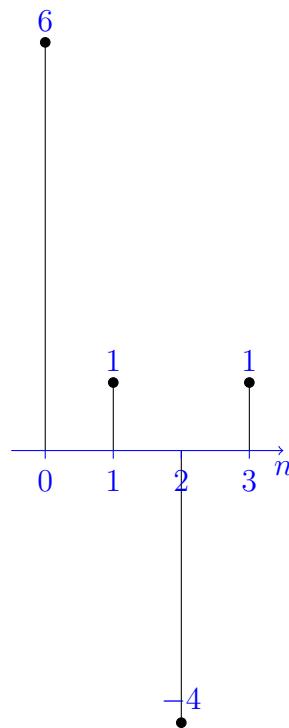
$$w_p[n] = \sum_{m=0}^3 x[m] y_p[((n-m))_4], \quad n = 0, 1, 2, 3.$$

Using $x = [2, 1, -1, 0]$ and $y_p = [2, 0, -1, 1]$:

$$\begin{aligned} w_p[0] &= 2 \cdot 2 + 1 \cdot 1 + (-1) \cdot 0 + 0 \cdot (-1) = 6, \\ w_p[1] &= 2 \cdot 0 + 1 \cdot 2 + (-1) \cdot 1 + 0 \cdot 0 = 1, \\ w_p[2] &= 2 \cdot (-1) + 1 \cdot 0 + (-1) \cdot 2 + 0 \cdot 1 = -4, \\ w_p[3] &= 2 \cdot 1 + 1 \cdot (-1) + (-1) \cdot 0 + 0 \cdot 2 = 1. \end{aligned}$$

So

$$w_p[0] = 6, \quad w_p[1] = 1, \quad w_p[2] = -4, \quad w_p[3] = 1.$$



Note that $w_p[n]$ is periodic with period 4.

(f). The linear convolution $w[n] = x[n] * x[-n]$ in part (c) has nonzero values for

$$-2 \leq n \leq 2,$$

so its length is 5. To avoid time-domain aliasing, the circular convolution length N must be at least the length of the linear convolution. Therefore

$$N \geq 5.$$

For any $N \geq 5$, the circular convolution of $x[n]$ with $x[(-n))_N]$ will be identical to $w[n]$ from part (c).

PROBLEM 8.43

(a) The 1024-point DFT of $x[n]$ is $X[k]$. The sequence $R[k]$ is obtained by compressing $X[k]$ by 2, so

$$R[k] = X[2k], \quad k = 0, \dots, 511.$$

Then $r[n]$ is the 512-point IDFT of $R[k]$. Compressing the spectrum by 2 means we undersample $X(e^{j\omega})$ in frequency, which causes aliasing in time. In this case the second half of $x[n]$ (samples 512–1023) folds onto the first half. Thus

$$r[n] = x[n] + x[n + 512], \quad 0 \leq n \leq 511,$$

and $r[n] = 0$ outside $0 \leq n \leq 511$. This corresponds to choice (iii).

(b) Now $Y[k]$ is obtained by expanding $R[k]$ by 2 in frequency. Expanding a sequence in frequency by 2 corresponds (by duality) to repeating the time sequence $r[n]$ twice, with an additional factor of 1/2. So over $0 \leq n \leq 1023$ we get two copies of $r[n]$, each scaled by 1/2:

$$y[n] = \begin{cases} \frac{1}{2}(x[n] + x[n + 512]), & 0 \leq n \leq 511, \\ \frac{1}{2}(x[n] + x[n - 512]), & 512 \leq n \leq 1023, \\ 0, & \text{otherwise.} \end{cases}$$

This matches choice A.

PROBLEM 8.50

We have a 10-point sequence $x[n]$. Its z -transform is

$$X(z) = \sum_{n=0}^9 x[n]z^{-n}.$$

The usual 10-point DFT samples this on the unit circle:

$$X[k] = X(e^{j2\pi k/10}).$$

We want to modify $x[n]$ so that the DFT of the new sequence $x_1[n]$ gives samples on the smaller circle of radius $\frac{1}{2}$ shown in Fig. P50–2. This means the samples should be

$$X_1[k] = X(z) \Big|_{z=\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}}.$$

Using the form of $X(z)$,

$$X_1[k] = X\left(\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}\right) = \sum_{n=0}^9 x[n] \left(\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}\right)^{-n}.$$

We want this to equal the 10-point DFT of a modified sequence $x_1[n]$:

$$X_1[k] = \sum_{n=0}^9 x_1[n]W_{10}^{kn}, \quad W_{10} = e^{-j2\pi/10}.$$

Matching terms, note that

$$W_{10}^{kn} = e^{-j2\pi kn/10}.$$

The expression we need to match is

$$\left(\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}\right)^{-n} = \left(\frac{1}{2}\right)^{-n} e^{-j2\pi kn/10} e^{-j\gamma n/10}.$$

Thus

$$x_1[n] e^{-j2\pi kn/10} = x[n] \left(\frac{1}{2}\right)^{-n} e^{-j\gamma n/10} e^{-j2\pi kn/10}.$$

Comparing coefficients gives

$$x_1[n] = x[n] \left(\frac{1}{2}\right)^{-n} e^{-j\gamma n/10} = x[n] \left(2 e^{-j\gamma/10}\right)^n.$$

This sequence $x_1[n]$ produces the equally spaced samples of $X(z)$ on the radius- $\frac{1}{2}$ circle.

PROBLEM 8.50

Given a 10-point sequence $x[n]$ whose z -transform is

$$X(z) = \sum_{n=0}^9 x[n] z^{-n}.$$

The usual 10-point DFT samples this on the unit circle:

$$X[k] = X\left(e^{j2\pi k/10}\right).$$

We need to modify $x[n]$ so that the DFT of the new sequence $x_1[n]$ gives samples on the smaller circle of radius $\frac{1}{2}$ shown in Fig. P50-2. This means the samples should be

$$X_1[k] = X(z) \Big|_{z=\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}}.$$

Using the form of $X(z)$,

$$X_1[k] = X\left(\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}\right) = \sum_{n=0}^9 x[n] \left(\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}\right)^{-n}.$$

This should equal the 10-point DFT of a modified sequence $x_1[n]$:

$$X_1[k] = \sum_{n=0}^9 x_1[n] W_{10}^{kn}, \quad W_{10} = e^{-j2\pi/10}.$$

Matching terms, we see

$$W_{10}^{kn} = e^{-j2\pi kn/10}.$$

The expression we need to match is

$$\left(\frac{1}{2}e^{j(2\pi k/10+\gamma/10)}\right)^{-n} = \left(\frac{1}{2}\right)^{-n} e^{-j2\pi kn/10} e^{-j\gamma n/10}.$$

Thus

$$x_1[n] e^{-j2\pi kn/10} = x[n] \left(\frac{1}{2}\right)^{-n} e^{-j\gamma n/10} e^{-j2\pi kn/10}.$$

Comparing coefficients gives

$$x_1[n] = x[n] \left(\frac{1}{2}\right)^{-n} e^{-j\gamma n/10} = x[n] \left(2 e^{-j\gamma/10}\right)^n.$$

EXERCISE 5.1

We create a length-16 sinusoid

$$x[n] = \sin(\omega_0 n), \quad \omega_0 = \frac{2\pi}{\sqrt{17}}.$$

We compute the 16-point DFT and call it $X[k]$. Then we zero pad $x[n]$ to lengths 32, 64, and 256 and compute the longer DFTs. The original 16 values of $X[k]$ appear exactly at corresponding frequency locations inside each longer DFT, and the remaining values in the longer transforms are interpolated values of the original spectrum.

```
Original 16 DFT samples:
Columns 1 through 7

0.4817 + 0.0000i  0.4939 + 0.1488i  0.5441 + 0.3652i  0.7404 + 0.9381i  -2.5203 - 7.2727i  0.0287 - 0.7333i  0.1631 - 0.3198i

Columns 8 through 14

0.2028 - 0.1344i  0.2128 + 0.0000i  0.2028 + 0.1344i  0.1631 + 0.3198i  0.0287 + 0.7333i  -2.5203 + 7.2727i  0.7404 - 0.9381i

Columns 15 through 16

0.5441 - 0.3652i  0.4939 - 0.1488i

Check that the same samples appear in X32, X64, X256 at expected indices:
Columns 1 through 7

0.4817 + 0.0000i  0.4939 + 0.1488i  0.5441 + 0.3652i  0.7404 + 0.9381i  -2.5203 - 7.2727i  0.0287 - 0.7333i  0.1631 - 0.3198i
0.4817 + 0.0000i  0.4939 + 0.1488i  0.5441 + 0.3652i  0.7404 + 0.9381i  -2.5203 - 7.2727i  0.0287 - 0.7333i  0.1631 - 0.3198i
0.4817 + 0.0000i  0.4939 + 0.1488i  0.5441 + 0.3652i  0.7404 + 0.9381i  -2.5203 - 7.2727i  0.0287 - 0.7333i  0.1631 - 0.3198i

Columns 8 through 14

0.2028 - 0.1344i  0.2128 + 0.0000i  0.2028 + 0.1344i  0.1631 + 0.3198i  0.0287 + 0.7333i  -2.5203 + 7.2727i  0.7404 - 0.9381i
0.2028 - 0.1344i  0.2128 + 0.0000i  0.2028 + 0.1344i  0.1631 + 0.3198i  0.0287 + 0.7333i  -2.5203 + 7.2727i  0.7404 - 0.9381i
0.2028 - 0.1344i  0.2128 + 0.0000i  0.2028 + 0.1344i  0.1631 + 0.3198i  0.0287 + 0.7333i  -2.5203 + 7.2727i  0.7404 - 0.9381i

Columns 15 through 16

0.5441 - 0.3652i  0.4939 - 0.1488i
0.5441 - 0.3652i  0.4939 - 0.1488i
0.5441 - 0.3652i  0.4939 - 0.1488i
```

```
N = 16;
w0 = 2*pi/sqrt(17);
n = 0:N-1;

x = sin(w0*n);      % length-16 signal
X16 = fft(x,16);    % 16-point DFT

% Zero-padded DFTs
X32 = fft(x,32);
X64 = fft(x,64);
X256 = fft(x,256);

disp('Original 16 DFT samples:')
disp(X16)

disp('Check that the same samples appear in X32, X64, X256 at expected indices:')
disp([X32(1:2:end); X64(1:4:end); X256(1:16:end)])
```

EXERCISE 5.2

This problem studies zero padding in the middle of a signal instead of at the end.

- (a) We choose a real and even-symmetric test signal of odd length, for example $N = 21$. Because the signal is real and even, its DFT is real and even. This is verified by computing the DFT.
- (b) We take the same signal and compute the 63-point DFT. Because the padding was done at the end, the symmetry is destroyed and the DFT is no longer purely real.
- (c) We create a new zero-padded signal of length 63 using the middle-padding method:

1. Copy the first $\frac{1}{2}(N + 1)$ samples of the original signal to the beginning. 2. Add $2N$ zeros. 3. Copy the last $\frac{1}{2}(N - 1)$ samples to the end.

This preserves even symmetry of the original signal, and its 63-point DFT remains real and even. IN addition the interpolation property also holds.

```

Are DFT samples real for middle-padded case?
1.7528

Compare original X[k] to downsampled longer DFT:
Columns 1 through 7

-0.0449 + 0.0000i -10.3818 - 1.5648i  2.0272 + 0.6253i -0.0018 - 0.0009i -0.0000 - 0.0000i  0.0001 + 0.0001i  0.0001 + 0.0001i
-0.0449 + 0.0000i -10.3818 - 1.5648i  2.0272 + 0.6253i -0.0018 - 0.0009i -0.0000 - 0.0000i  0.0001 + 0.0001i  0.0001 + 0.0001i

Columns 8 through 14

0.0001 + 0.0001i  0.0000 + 0.0001i  0.0000 + 0.0000i  0.0000 + 0.0000i  0.0000 - 0.0000i  0.0000 - 0.0000i  0.0000 - 0.0000i
0.0001 + 0.0001i  0.0000 + 0.0001i  0.0000 + 0.0000i  0.0000 + 0.0000i  0.0000 - 0.0000i  0.0000 - 0.0000i  0.0000 - 0.0000i

Columns 15 through 21

0.0001 - 0.0001i  0.0001 - 0.0001i  0.0001 - 0.0001i -0.0000 + 0.0000i -0.0018 + 0.0009i  2.0272 - 0.6253i -10.3818 + 1.5648i
0.0001 - 0.0001i  0.0001 - 0.0001i  0.0001 - 0.0001i -0.0000 + 0.0000i -0.0018 + 0.0009i  2.0272 - 0.6253i -10.3818 + 1.5648i

```

$N = 21;$
 $m = -(N-1)/2 : (N-1)/2;$
 $x = \cos(0.3*m) + 0.2*\cos(0.6*m); \quad \text{\% real and even}$
 $x = x(:)'; \quad \text{\% row vector}$

$X21 = \text{fft}(x, 21);$
 $x_endpad = [x \text{ zeros}(1, 63-21)];$
 $X63_end = \text{fft}(x_endpad, 63); \quad \text{\% no longer purely real}$

\%middle padding
 $L1 = (N+1)/2;$
 $\text{\% take last } (N-1)/2 \text{ samples}$
 $L2 = (N-1)/2;$

$x_mid = [x(1:L1) \text{ zeros}(1, 2*N) x(end-L2+1:end)];$
 $X63_mid = \text{fft}(x_mid, 63); \quad \text{\% symmetry preserved}$

\% realness
 $\text{disp('Are DFT samples real for middle-padded case?')}\n\text{disp(max(abs(imag(X63_mid))))}$

$\text{\% interp property}$
 $\text{disp('Compare original X[k] to downsampled longer DFT:')} \n\text{disp([X21; X63_mid(1:3:end)])}$