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Homework 2

Problem 5.33

Given:

H(z) = (1 − 2z−1)(1 − 0.75z−1)
z−1(1 − 0.5z−1) =

(1 − 2z−1)(1 − 3
4z−1)

z−1(1 − 1
2z−1) .

(a) Minimum-phase × all-pass. We want

H(z) = Hmin 1(z) Hap(z)

with Hmin 1(z) minimum phase (all zeros and poles inside |z| < 1) and Hap(z) unity-gain all-pass.
Step 1: put the inside-unit-circle factors into the minimum-phase part. Inside the unit circle we already
have

zero at z = 3
4 , pole at z = 1

2 .

So a first try is

H
(0)
min 1(z) =

z − 3
4

z − 1
2
.

The remaining factors (those outside |z| = 1 and at z = 0 or ∞) go to the all-pass part: zero at z = 2,
pole at z = 0.
Step 2: make the second part actually all-pass. A 1-D all-pass has its zeros and poles in reciprocal pairs.
We already have a zero at z = 2 (outside), so we must pair it with a pole at z = 1

2 (inside). Likewise, we
already have a pole at z = 0 (i.e. at ∞ in the w = 1/z plane), so we must pair it with a zero at z = ∞
(i.e. a factor of z). The neat way to do this is to move the pole at z = 1

2 from H
(0)
min 1(z) to the all-pass and

then compensate in the minimum-phase part.
Concretely, take

Hap(z) = z(z − 2)
z − 1

2
= 1 − 2z−1

(1 − 1
2z−1) z−1 .

This has
• zeros at z = 2 and at ∞ (the factor z),
• poles at z = 1

2 and at z = 0,
so the zeros/poles come in reciprocal pairs and Hap(ejω) has unit magnitude.

Then the minimum-phase part must be what is left:

Hmin 1(z) = H(z)
Hap(z) =

(1 − 2z−1)(1 − 3
4z−1)

z−1(1 − 1
2z−1) ·

(1 − 1
2z−1)z−1

1 − 2z−1 = 1 − 3
4z−1.

Equivalently,

Hmin 1(z) =
z − 3

4
z

.

This has a zero at z = 3
4 and a pole at z = 0, both inside |z| = 1, so it is minimum phase.

Uniqueness. We never had a “free” choice: every time we introduced a pole/zero into the all-pass, the
matching reciprocal factor was forced, and anything added to the all-pass would have to be cancelled in the
minimum-phase part, but items outside the unit circle cannot be cancelled by a minimum-phase system.
Hence, apart from an overall (nonzero) scale factor, the decomposition is unique.
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Pole–zero pictures. Original system:

Re(z)

Im(z)

× ×

Minimum-phase part Hmin 1(z) = 1 − 3
4z−1:

Re(z)

Im(z)

×

All-pass part Hap(z) = 1 − 2z−1

(1 − 1
2z−1)z−1 :

Re(z)

Im(z)

× ×

So the answer for part (a) is

Hmin 1(z) = 1 − 3
4z−1, Hap(z) = 1 − 2z−1

(1 − 1
2z−1) z−1

and this decomposition is unique up to a constant gain.

(b) Minimum-phase × generalized linear-phase FIR. Now we want
H(z) = Hmin 2(z) Hlp(z)

where Hlp(z) is a linear-phase FIR. That means Hlp(z) must be FIR (so all its poles are at z = 0 or ∞)
and the zeros must occur in reciprocal and conjugate-symmetric fashion to give linear phase.
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Look again at the pole–zero pattern of H(z):
• zero at z = 2 (outside),
• zero at z = 3

4 (inside),
• pole at z = 1

2 (inside),
• pole at z = 0.

A simple way to get a linear-phase FIR factor is to force the outside zero z = 2 to live in the FIR part
together with its reciprocal z = 1

2 so that the FIR part has symmetric zeros.
So take for the FIR part

Hlp(z) = z
(
1 − 1

2z−1
)(

1 − 2z−1
)

= z − 2.5 + z−1.

This is a 3-tap, even-symmetric sequence, so it is linear phase. Its zeros are at z = 2 and z = 1
2 .

Then,

Hmin 2(z) = H(z)
Hlp(z) =

(1 − 2z−1)(1 − 3
4z−1)

z−1(1 − 1
2z−1) · 1

z(1 − 1
2z−1)(1 − 2z−1) =

1 − 3
4z−1

(1 − 1
2z−1)2 .

Equivalently,

Hmin 2(z) =
z − 3

4
(z − 1

2)2 =
1 − 3

4z−1(
1 − 1

2z−1
)2 .

This has a zero at z = 3
4 and a (double) pole at z = 1

2 , all inside |z| < 1, so it is minimum phase.
Uniqueness. Exactly the same logic as in part (a): once FIR part be linear phase, any attempt to move
a pole/zero between the two factors would either (i) break linear phase (because we’d have to reflect an
inside-circle item to the outside) or (ii) break minimum phase (because we would need to keep an outside
zero in the minimum-phase factor). Therefore the factorization is uniqe up to a scale.
Pole–zero pictures. Minimum-phase part Hmin 2(z):

Re(z)

Im(z)

××

Linear-phase FIR part Hlp(z) = z − 2.5 + z−1:

Re(z)

Im(z)

×
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So the answer for part (b) is

Hmin 2(z) =
1 − 3

4z−1

(1 − 1
2z−1)2 , Hlp(z) = z

(
1 − 1

2z−1
)(

1 − 2z−1
)

= z − 2.5 + z−1

and, again, the decomposition is unique up to a constant gain.

Problem 4.50

Determine whether system has a stable inverse system.
From the plotted H(ejω) we see that the frequency response touches (and actually crosses) zero at some

frequency ω0 on the unit circle. That means the system has a zero on the unit circle, i.e.
H(ejω0) = 0 for some ω0.

If we form the inverse system,
Hinv(ejω) = 1

H(ejω) ,

then at ω = ω0 the inverse would require division by zero, which corresponds in the z-domain to the inverse
system having a pole on the unit circle. A pole on the unit circle makes the inverse system unstable (its
impulse response would not be absolutely summable). Therefore, the given system does not have a stable
inverse system.

Problem 5.51

A causal LTI system has the system function

H(z) = (1 − 2z−1)(1 + jz−1)(1 + 0.9z−1)
(1 − z−1)(1 + 0.7jz−1)(1 − 0.7jz−1) .

(a) First write H(z) = Y (z)
X(z) as a ratio of polynomials in z−1.

H(z) = (1 − 2z−1)(1 + jz−1)(1 + 0.9z−1)
(1 − z−1)

(
1 + 0.7jz−1

)(
1 − 0.7jz−1

)
= 1 − 0.6z−1 − 2.35z−2 − 0.9z−3

1 − z−1 + 0.49z−2 − 0.49z−3

= Y (z)
X(z) .

Hence (
1 − z−1 + 0.49z−2 − 0.49z−3

)
Y (z) =

(
1 − 0.6z−1 − 2.35z−2 − 0.9z−3

)
X(z).

Taking the inverse z-transform gives the difference equation

y[n] − y[n − 1] + 0.49 y[n − 2] − 0.49 y[n − 3] = x[n] − 0.6 x[n − 1] − 2.35 x[n − 2] − 0.9 x[n − 3].

(b) Zeros:
z = 2, z = −j, z = −0.9.

Poles:
z = 1, z = 0.7j, z = −0.7j.

Since the system is causal, the ROC must be the outside of the outermost pole, so

ROC: |z| > 1.

(d)
(i) “The system is stable.” False. For a causal LTI system to be stable, the ROC must include the unit

circle. Here the ROC is |z| > 1, so |z| = 1 is not included. Hence the system is not BIBO–stable.
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(ii) “The impulse response approaches a constant for large n.” False. Because there is a pole on the
unit circle at z = 1, the response does not settle to a finite constant in the BIBO–stable sense.

(iii) “|H(ejω)| has a peak at approximately ω = ±π/4.” False. From the form of the poles (at ±0.7j) the
peaks occur nearer ω = ±π/2, not at ±π/4.

(iv) “The system has a stable and causal inverse.” False. The inverse would swap the poles and zeros.
That would put a pole at z = 2 (outside) and at z = −0.9 (inside), so no single-sided ROC can
include both and still contain the unit circle. Thus no inverse can be both causal and stable.

Problem 5.57

We have

H(ejω) =
M∑

n=0
h[n]e−jωn, h[n] = h[M − n].

Split the sum into two equal halves (there is no middle sample now):

H(ejω) =
(M−1)/2∑

n=0
h[n]e−jωn +

(M−1)/2∑
n=0

h[M − n]e−jω(M−n)

=
(M−1)/2∑

n=0
h[n]e−jωn +

(M−1)/2∑
n=0

h[n]e−jωMejωn

= e−jωM/2
(M−1)/2∑

n=0
2h[n] cos

(
ω(M/2 − n)

)
.

Let
b[n] = 2h

(
M + 1

2 − n
)

, n = 1, . . . ,
M + 1

2 ,

then

H(ejω) = e−jω(M/2)
(M+1)/2∑

n=1
b[n] cos

(
ω(n − 1

2)
)
.

Hence for Type II filters

A(ejω) =
(M+1)/2∑

n=1
b[n] cos

(
ω(n − 1

2)
)
, α = M

2 , β = 0.

Now h[n] = −h[M − n] and h[M/2] = 0. Then

H(ejω) =
M∑

n=0
h[n]e−jωn

=
M/2−1∑

n=0
h[n]e−jωn +

M/2−1∑
n=0

h[M − n]e−jω(M−n)

=
M/2−1∑

n=0
h[n]e−jωn −

M/2−1∑
n=0

h[n]e−jωMejωn

= e−jωM/2
M/2−1∑

n=0
2j h[n] sin

(
ω(M/2 − n)

)
.

Define
c[n] = 2h

(
M

2 − n
)

, n = 1, . . . ,
M

2 ,

so

H(ejω) = e−jω(M/2)ejπ/2
M/2∑
n=1

c[n] sin(ωn).
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Thus for Type III filters

A(ejω) =
M/2∑
n=1

c[n] sin(ωn), α = M

2 , β = π

2 .

Problem 1.2: Impulse Response with filter

We are given the difference equation

y[n] − 1.8 cos
(

π

16

)
y[n − 1] + 0.81y[n − 2] = x[n] + 1

2x[n − 1].

The transfer function is
H(z) = 1 + 0.5z−1

1 − 1.8 cos(π/16)z−1 + 0.81z−2 .

The impulse response h[n] is obtained using the filter() function in MATLAB.
clear; clc;
a = [1, -1.8*cos(pi/16), 0.81];
b = [1, 0.5];
n = -10:100;
x = (n==0);
h = filter(b, a, x);
stem(n, h, 'filled');
xlabel('n'); ylabel('h[n]');
title('Impulse Response');
grid on;
saveas(gcf, 'image.png');
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Problem 3.1: Frequency Response with freqz

The given system has transfer function

H(z) = 1 + 0.5z−1

1 − 1.8 cos
(

π
16

)
z−1 + 0.81z−2

.

We can compute its frequency response using the freqz function in MATLAB, which evaluates H(ejω) on
the unit circle.
clear; clc;
a = [1, -1.8*cos(pi/16), 0.81];
b = [1, 0.5];

% Full frequency range (0 to 2�)
[H, w] = freqz(b, a, 512, 'whole');
figure;
subplot(2,1,1); plot(w, abs(H)); ylabel('|H(e^{j\omega})|');
subplot(2,1,2); plot(w, angle(H)); ylabel('�H(e^{j\omega})'); xlabel('� (rad/sample)');
sgtitle('Frequency Response (0 to 2�)');
saveas(gcf, 'image_full.png');

% Half range (0 to �)
[H_half, w_half] = freqz(b, a, 512);
figure;
subplot(2,1,1); plot(w_half, abs(H_half)); ylabel('|H(e^{j\omega})|');
subplot(2,1,2); plot(w_half, angle(H_half)); ylabel('�H(e^{j\omega})'); xlabel('� (rad/sample)');
sgtitle('Frequency Response (0 to �)');
saveas(gcf, 'image_half.png');

This script first computes the full 0 ≤ ω ≤ 2π frequency response, then repeats for 0 ≤ ω ≤ π, which is
sufficient for real-coefficient systems due to conjugate symmetry.

From the plots, the filter exhibits a strong low-frequency gain and attenuation at high frequencies, so it
behaves a s a low pass filter.
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Figure 1. Magnitude and phase response of H(ejω) for 0 ≤ ω ≤ 2π.

Figure 2. Magnitude and phase response of H(ejω) for 0 ≤ ω ≤ π.
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