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Homework 2\

PROBLEM 5.33

Given:
C(1-22"H(1-07527Y)  (1-22N)(1—32271)
HE =i 05— 21012

(a) Minimum-phase x all-pass. We want
H(2) = Hin1(2) Hap(2)

with Hpnin1(2) minimum phase (all zeros and poles inside |z| < 1) and H,,(z) unity-gain all-pass.
Step 1: put the inside-unit-circle factors into the minimum-phase part. Inside the unit circle we already
have

_ 3 —
zero at z = 4, pole at z =

o=

So a first try is

3
0 1
Hr(ni)nl(z) = 7%-

2

The remaining factors (those outside |z| = 1 and at z = 0 or co) go to the all-pass part: zero at z = 2,

pole at z = 0.

Step 2: make the second part actually all-pass. A 1-D all-pass has its zeros and poles in reciprocal pairs.
1

We already have a zero at z = 2 (outside), so we must pair it with a pole at z = 5 (inside). Likewise, we

already have a pole at z = 0 (i.e. at oo in the w = 1/z plane), so we must pair it with a zero at z = oo
(i.e. a factor of z). The neat way to do this is to move the pole at z = % from Hfﬁ)nl(z) to the all-pass and
then compensate in the minimum-phase part.

Concretely, take
z(z —2) 1—2271
ap(z): Z—l = (1_%271)2:,1'

This has

e zeros at z = 2 and at oo (the factor z),
° polesatz:%andatz:o,

so the zeros/poles come in reciprocal pairs and H,,(e?*) has unit magnitude.
Then the minimum-phase part must be what is left:
H(z) (1—-2z2"H)(1-23271) (1-31z71)271

Hmin - = 4 : 2
1(2) Hop(2) 2711 — 3271 1—2z71

Equivalently,

z —

(oY

Hminl(Z) - >

This has a zero at z = % and a pole at z = 0, both inside |z| = 1, so it is minimum phase.

Uniqueness. We never had a “free” choice: every time we introduced a pole/zero into the all-pass, the
matching reciprocal factor was forced, and anything added to the all-pass would have to be cancelled in the
minimum-phase part, but items outside the unit circle cannot be cancelled by a minimum-phase system.

Hence, apart from an overall (nonzero) scale factor, the decomposition is unique.
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Pole-zero pictures. Original system:

X X0 o
Minimum-phase part Hyn1(z) =1 — %z‘l:
X O
All-pass part Hy,(z) = (11_222_21;12_1:
X X o
So the answer for part (a) is
1—2271

Hyin1(2) =1— 3,71, Hop(z) =

~

(1— %z*l) 2z~ 1

and this decomposition is unique up to a constant gain.
(b) Minimum-phase x generalized linear-phase FIR. Now we want
H(z) = Hmina(2) Hp(2)

where Hj,(z) is a linear-phase FIR. That means H;,(z) must be FIR (so all its poles are at z = 0 or co)
and the zeros must occur in reciprocal and conjugate-symmetric fashion to give linear phase.



Look again at the pole-zero pattern of H(z):
e zero at z = 2 (outside),
e zero at z = = (inside),
e pole at z = 7 (inside),
e pole at z = 0.

N[ =is |

A simple way to get a linear-phase FIR factor is to force the outside zero z = 2 to live in the FIR part
together with its reciprocal z = % so that the FIR part has symmetric zeros.
So take for the FIR part

Hy,(z) = z(l — %z‘l) (1 — 22_1> =2—-25+z"1
This is a 3-tap, even-symmetric sequence, so it is linear phase. Its zeros are at z = 2 and 2z = %
Then,
H(z) (1-2z"1(1-3z271 1 1371

THG) T g Al -2 G-

Hrnin2(z)

Equivalently,

_ 3 _ 3.1
z— 5 1 17
z

(z - %)2 (1 — 12—1)2.

2

Hmin2(z) -

This has a zero at z = % and a (double) pole at z = %, all inside |z| < 1, so it is minimum phase.
Uniqueness. Exactly the same logic as in part (a): once FIR part be linear phase, any attempt to move
a pole/zero between the two factors would either (i) break linear phase (because we’'d have to reflect an
inside-circle item to the outside) or (ii) break minimum phase (because we would need to keep an outside
zero in the minimum-phase factor). Therefore the factorization is unige up to a scale.

Pole—zero pictures. Minimum-phase part Hpi,2(2):

X0

Linear-phase FIR part Hy,(z) = z — 2.5+ 2L



So the answer for part (b) is

1—3271 B - -
HminQ(Z) - (1_%#1)2, Hlp(Z) :z(l—%z 1)(1—22’ 1) 22—25+Z 1

and, again, the decomposition is unique up to a constant gain.

PrROBLEM 4.50

Determine whether system has a stable inverse system.

From the plotted H(e’*) we see that the frequency response touches (and actually crosses) zero at some
frequency wqy on the unit circle. That means the system has a zero on the unit circle, i.e.

H(e’) =0 for some wy.

If we form the inverse system,

1
H(eiw)’
then at w = wy the inverse would require division by zero, which corresponds in the z-domain to the inverse
system having a pole on the unit circle. A pole on the unit circle makes the inverse system unstable (its
impulse response would not be absolutely summable). Therefore, the given system does not have a stable
inverse system.

Hinv<€jw) -

PROBLEM 5.51

A causal LTI system has the system function
(1—=22"H1472"1H(1+0927h)
H(z) = . : :
(1—2z1(1+0.7jz"1(1 —-0.7jz71)
Y(2)

X(2)
o -1 | 1
H(z) (1—-22"Y1+72"(14+09271)
(1—271 (1 + O.7jz—1) (1 — 0.7]'2—1)
B 1—0.62"1—-2352"2—-0.9273
1 — 214049272 —0.4923
_Y(2)
- X(2)

as a ratio of polynomials in 2.

(a) First write H(z) =

Hence
(1= 2714049272 = 0.49: 7)Y (2) = (1 - 062" — 2.35272 - 0.9:7°) X (2).

Taking the inverse z-transform gives the difference equation

yln] —y[n — 1]+ 0.49y[n — 2] — 0.49y[n — 3] = z[n] — 0.6 x[n — 1] — 2.35x[n — 2] — 0.9 z[n — 3].

(b) Zeros:

Poles:
z=1 2z=07;, 2z=-0.77.
Since the system is causal, the ROC must be the outside of the outermost pole, so

ROC: |z| > 1.

(d)
(i) “The system is stable.” False. For a causal LTI system to be stable, the ROC must include the unit
circle. Here the ROC is |z| > 1, so |z| = 1 is not included. Hence the system is not BIBO-stable.
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(ii) “The impulse response approaches a constant for large n.” False. Because there is a pole on the
unit circle at z = 1, the response does not settle to a finite constant in the BIBO-stable sense.

(iii) “|H(e’™)| has a peak at approzimately w = +m/4.” False. From the form of the poles (at £0.75) the
peaks occur nearer w = +m/2, not at £ /4.

(iv) “The system has a stable and causal inverse.” False. The inverse would swap the poles and zeros.
That would put a pole at z = 2 (outside) and at z = —0.9 (inside), so no single-sided ROC can
include both and still contain the unit circle. Thus no inverse can be both causal and stable.

PROBLEM 5.57
We have
H (&™) Z h[n]e 7", hin] = h[M — n].

Split the sum into two equal halves (there is no middle sample now):

, (M-1)/2 ' (M—1)/2 '
HE)y = Y hple?+ 3 h[M —nle =)
n=0 n=0
(M—1)/2 (M—1)/2

= X hpleTmr X0 BlnleniM e

' (M—-1)/2
= e M2 N 2n[n) cos(w(M/2 - n))
n=0

bet M+1 M+1
b[n]:2h< + —n) n=1,..., i ,
2 2
then
A A (M+1)/2
H(ew) = e79w(M/2) Z b[n COS( %))
Hence for Type II filters
' (M+1)/2 M
A(e??) = Z bn cos( %)), a=—, g =0.
Now h[n] = —h[M — n| and h[M/Q] = (. Then
ejw Z h f]wn
M/2 1 M/2—1
_ Z h[ —]wn_|_ Z h e]wM n)
n=0
M/2-1 ' M/2 1 . '
= > hnle " — 3 hnje IeMeion
n=0 n=0
' M/2—1
= e M2 N 25 hin) sin(w(M/Q—n)).
n=0
Define
M M
c[n]th(—n), n=1,...,—,
2 2
SO

M2
H(ejw) _ E*J'u-’(]\/f/Q)ejﬂ'/2 Z C[n] sin(wn).

n=1



Thus for Type III filters

J” | sin(wn) o=

||F1§

PROBLEM 1.2: IMPULSE RESPONSE WITH FILTER

We are given the difference equation
y[n] — 1.8 cos(lﬂﬁ) yln — 1]+ 0.81y[n — 2] = z[n] + tz[n — 1].

The transfer function is
1+0.5271
1 —1.8cos(m/16)2=1 +0.8122
The impulse response h[n| is obtained using the filter() function in MATLAB.

H(z) =

clear; clc;

a = [1, -1.8*cos(pi/16), 0.81];
b = [1, 0.5];

n = -10:100;

x = (n==0);

h = filter(b, a, x);

stem(n, h, 'filled');
xlabel('n'); ylabel('h[n]');
title('Impulse Response');
grid on;

saveas(gcf, 'image.png');

Impulse Response of the Given System

h{n]

0 20 40 60 80 100



PROBLEM 3.1: FREQUENCY RESPONSE WITH FREQZ

The given system has transfer function
1+4+0.5z71

T 1-18 cos(f5) = +0.81272

H(z)

We can compute its frequency response using the freqz function in MATLAB, which evaluates H(e/) on
the unit circle.

clear; clc;

a = [1, -1.8*cos(pi/16), 0.81];

b = [1, 0.5];

% Full frequency range (0 to 2)

[H, w] = freqz(b, a, 512, 'whole');

figure;

subplot(2,1,1); plot(w, abs(H)); ylabel('|H(e"{j\omegal})|');

subplot(2,1,2); plot(w, angle(H)); ylabel(' H(e"{j\omegal})'); xlabel(' (rad/sample)');
sgtitle('Frequency Response (0 to 2)');

saveas(gcf, 'image full.png');

% Half range (0 to )
[H_half, w_half] = freqz(b, a, 512);
figure;
subplot(2,1,1); plot(w_half, abs(H_half)); ylabel('|H(e"{j\omegal})|');
subplot(2,1,2); plot(w_half, angle(H half)); ylabel(' H(e"{j\omegal})'); xlabel(' (rad/sample)
sgtitle('Frequency Response (0 to )');
saveas(gcf, 'image half.png');

This script first computes the full 0 < w < 27 frequency response, then repeats for 0 < w < 7, which is
sufficient for real-coefficient systems due to conjugate symmetry.

From the plots, the filter exhibits a strong low-frequency gain and attenuation at high frequencies, so it
behaves a s a low pass filter.
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FIGURE 1. Magnitude and phase response of H(e’*) for 0 < w < 2.
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50 . . . .

0 0.5 1 1.5 2 25 3 35

2H(e"™)

0 0.5 1 1.5 2 25 3 3.5
w (rad/sample)

FIGURE 2. Magnitude and phase response of H(e*) for 0 < w < .
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