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Homework 2

Problem 1

Which of the following discrete-time signals are eigenfunctions of stable, linear time-invariant (LTI)
systems? Explain why.

Question 1.
1) x1[n] = ejπn/3 + ejπn/4

Each term ejπn/3 and ejπn/4 is individually an eigenfunction of an LTI system. However, their
sum is not a single eigenfunction, because the output would be

y[n] = H
(
ejπ/3

)
ejπn/3 + H

(
ejπ/4

)
ejπn/4,

which is a linear combination of two exponentials, not a scaled version of x1[n]. Thus, x1[n] is not
an eigenfunction.

2) x2[n] = sin
(

π
3 n

)
Using Euler’s identity:

sin
(

π
3 n

)
= 1

2j

(
ejπn/3 − e−jπn/3

)
.

Each exponential is an eigenfunction, but their linear combination is not a single exponential. Thus
x2[n] is not an eigenfunction.

3) x3[n] = 3nu[n]
This can be written as

x3[n] =
(
eln(3)

)n
u[n].

The exponential part e(ln 3)n looks like an eigenfunction, but the presence of u[n] truncates it to
n ≥ 0. Because of the step function, the output of an LTI system will not remain a scaled version
of x3[n]. Hence x3[n] is not an eigenfunction.

4) x4[n] =
(

1
2

)n
ejπn/5

We can rewrite:
x4[n] =

(
1
2ejπ/5

)n
.

This is a complex exponential with base rejω where r = 1
2 . General LTI systems have eigenfunctions

of the form λn with complex λ. Therefore, x4[n] is an eigenfunction.

Only (d) is an eigenfunction of an LTI system.

Problem: O/S 2.26

For each system, pick the strongest valid conclusion from: (i) must be LTI and uniquely specified; (ii)
must be LTI but not uniquely specified; (iii) could be LTI and, if so, uniquely specified; (iv) could be LTI
but not uniquely specified; (v) could not possibly be LTI. For any case where you choose (i) or (iii), give
h[n].

System A. Input: x[n] = (1/2)n → Output: (1/4)n.
For an LTI system, λn is an eigenfunction: T{λn} = H(λ)λn. Since (1/2)n would have to map to a

scaled (1/2)n (not (1/4)n), the mapping violates the eigenfunction property.

Conclusion: (v) The system could not possibly be LTI.
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System B. Input: x[n] = cos(πn/3) → Output: 3j sin(πn/3).
An LTI system excited by a sinusoid at frequency ω0 produces a sinusoid at the same ω0 with ampli-

tude/phase change. The given input-output pair is consistent with some complex frequency response at
ω0 = π/3, but it does not determine H(ejω) for other ω.

Conclusion: (iv) The system could be LTI, but is not uniquely determined.

System C. Input: x[n] = δ[n + 1] + 1
2 δ[n], Output: y[n] =

(
1
3

)n
u[n].

If the system is LTI, then with x[n] = δ[n + 1] + 1
2δ[n] we have

y[n] = h[n + 1] + 1
2 h[n].

Equivalently in the z-domain:

X(z) = z−1 + 1
2 , Y (z) = 1

1 − 1
3z−1 , H(z) = Y (z)

X(z) = 1(
1 − 1

3z−1
)(

z−1 + 1
2

) .

Partial fractions in r = z−1:
1

(1 − 1
3r)(r + 1

2) =
2
7

1 − 1
3r

+
6
7

r + 1
2
.

Taking inverse z-transforms (with the ROC matching Y (z), i.e., right-sided for the first term and left-sided
for the second):

h[n] = 2
7

(
1
3

)n

u[n] − 6
7 (−1

2) n−1u[−n − 1].

Thus the information uniquely specifies an LTI system (its H(z) is fixed by X and Y ), but h[n] is two-sided
(noncausal) and not absolutely summable (unstable).

Conclusion: (iii) The system could be LTI and, if so, is uniquely specified, with h[n] = 2
7

(1
3

)n

u[n] − 6
7 (−1

2)n−1u[−n − 1].

Problem 54

Given h1[n] = β δ[n − 1] and h2[n] = αnu[n] with the adder before h2.

(a) Impulse response h[n] of the overall system. From the diagram, the effective input to h2 is
x[n] + (x ∗ h1)[n] = x[n] + βx[n − 1], so the overall impulse response is

h[n] = (δ[n] + h1[n]) ∗ h2[n] = h2[n] + h1[n] ∗ h2[n] = αnu[n] + β αn−1u[n − 1].

(b) Frequency response H(ejω). Using ∑∞
n=0(αe−jω)n = 1

1−αe−jω (for |α| < 1) and the time shift:

F{αnu[n]} = 1
1 − αe−jω

, F{αn−1u[n − 1]} = e−jω

1 − αe−jω
.

Hence

H(ejω) = 1
1 − αe−jω

+ β
e−jω

1 − αe−jω
= 1 + βe−jω

1 − αe−jω
.

(c) Difference equation relating y[n] and x[n]. Since H(ejω) = Y (ejω)
X(ejω) ,

(1 − αe−jω)Y (ejω) = (1 + βe−jω)X(ejω).

Taking inverse Fourier transforms gives

y[n] − α y[n − 1] = x[n] + β x[n − 1].
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(d) Causality and stability. From (a), h[n] = 0 for n < 0; therefore the system is causal. BIBO
stability requires h[n] ∈ `1, which holds iff the geometric terms decay:

∞∑
n=0

∣∣∣αn
∣∣∣ < ∞ ⇐⇒ |α| < 1 .

(For any finite β, the second term also decays under the same condition.)

Problem 55: Properties from x[n] in Fig. P55

Let X(ejω) = ∑
n x[n]e−jωn.

(a) X(ejω)
∣∣∣
ω=0

.
X(ej·0) =

∑
n

x[n] = 6 .

(b) X(ejω)
∣∣∣
ω=π

.
X(ejπ) =

∑
n

x[n]e−jπn =
∑

n

x[n](−1)n = 2 .

(d)
∫ π

−π
X(ejω) dω. Using the DTFT identity

1
2π

∫ π

−π
X(ejω)ejωn dω = x[n],

set n = 0: ∫ π

−π
X(ejω) dω = 2π x[0] = 4π .

(e) Signal with Fourier transform X(e−jω). Let Y (ejω) = X(e−jω). Then

Y (ejω) =
∑

n

x[n]e+jωn =
∑

n

x[−n]e−jωn

so the corresponding time signal is
y[n] = x[−n] .

That is, the sketch is the time-reversed version of x[n] (mirror the stems of Fig. P55 about n = 0).

Problem: O/S 2.85

Let X(ejω) be the 2π-periodic triangular spectrum

X(ejω) =

1 − |ω|
3π/4 , |ω| ≤ 3π/4,

0, 3π/4 < |ω| ≤ π,
and periodic with 2π.

We form, as in O/S 2.85:

ys[n] =

x[n], n even
0, n odd

, yd[n] = x[2n], ye[n] =

x[n/2], n even
0, n odd

.

(a) Sampler ys[n]. Using ys[n] = 1
2

(
1 + ejπn

)
x[n],

Ys(ejω) = 1
2

[
X(ejω) + X

(
ej(ω+π)

)]
.

(b) Compressor (downsample by 2) yd[n] = x[2n]. Standard aliasing formula:

Yd(ejω) = 1
2

[
X

(
ejω/2

)
+ X

(
ej(ω/2+π)

)]
(equivalently Yd(ejω) = Ys

(
ejω/2

)
).
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(c) Expander (upsample by 2) ye[n]. Upsampling property:

Ye(ejω) = X(ej2ω).
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